在卫生研究所的波尔塔德希罗 - 莫贾达哈达达大学医院,巴德·希罗 - 塞戈维亚·德·阿拉纳(Puerta de Hierro-Segovia de Arana) Ma´laga, Ma´laga, Spain and Unit of heart insufficiency, cardiology service, Basurto University Hospital, Bilbao, Vizcaya, Spain Institute of BiomeMic Investigation of Bellvitge (Idibell), L'Hospitalet de Llobregat, Barcelona, Spain Give University Clinic of Zaragoza, Institute of Health Research of Arago´n (IIS-A), Zaragoza, Spain JE Corunnd,西班牙K瓦伦西亚大学诊所医院的西班牙k服务,瓦伦西亚大学,西班牙瓦伦西亚卫生研究所,西班牙卫生研究所,l pfier zer eSpanva s.l.u.
技术一直伴随着我们,成就了我们。自人类诞生以来,技术就塑造了我们彼此之间以及与周围世界的关系。然而,近年来,在自动算法和人工智能的推动下,计算技术的发展加速,以前所未有的方式重新配置了许多这些关系。基于机器、人工智能驱动的对人类和非人类生命、行为和实践的量化和生物特征测量只是其中几个例子,它们促使我们思考:在当今的技术文化中,我们如何在个人、社会、环境甚至生存层面上相互联系以及与共同的环境建立联系?技术以及从前到后塑造技术的人如何协商、调解和操纵这些关系?《关系技术、技术关系》源于一项名为“BioMe:生物特征人工智能在日常生活中的生存挑战和道德要求”的研究项目的讨论,该项目由乌普萨拉大学的 Amanda Lagerkvist 教授领导。该项目的核心目标是研究与这些技术接触的体验范围,重点关注它们的可能性、挑战和弱点,以研究它们对网络人类提出的紧迫的道德要求。本次活动标志着 BioMe 项目的结束,重点关注艺术家、批判媒体从业者以及其他富有创造力的个人和集体如何在实践和概念上参与自动化、监控、生命测量技术以及日常生活中生物统计协调的现实。
技术一直伴随着我们,成就了我们。自人类诞生以来,技术就塑造了我们彼此之间以及与周围世界的关系。然而,近年来,在自动算法和人工智能的推动下,计算技术的发展加速,以前所未有的方式重新配置了许多这些关系。基于机器、人工智能驱动的对人类和非人类生命、行为和实践的量化和生物特征测量只是其中几个例子,它们促使我们思考:在当今的技术文化中,我们如何在个人、社会、环境甚至生存层面上相互联系以及与共同的环境建立联系?技术以及从前到后塑造技术的人如何协商、调解和操纵这些关系?《关系技术、技术关系》源于一项名为“BioMe:生物特征人工智能在日常生活中的生存挑战和道德要求”的研究项目的讨论,该项目由乌普萨拉大学的 Amanda Lagerkvist 教授领导。该项目的核心目标是研究与这些技术接触的体验范围,重点关注它们的可能性、挑战和弱点,以研究它们对网络人类提出的紧迫的道德要求。本次活动标志着 BioMe 项目的结束,重点关注艺术家、批判媒体从业者以及其他富有创造力的个人和集体如何在实践和概念上参与自动化、监控、生命测量技术以及日常生活中生物统计协调的现实。
1 巴西圣保罗联邦大学-保利斯塔医学院 (UNIFESP/EPM) 微生物学、免疫学和寄生虫学系,2 巴西圣保罗大学 (USP) 生物医学科学研究所寄生虫学系,3 巴西圣保罗大学 (USP) 生物医学科学研究所微生物学系,4 巴西圣保罗以色列爱因斯坦医院,5 美国俄亥俄州克利夫兰凯斯西储大学凯斯综合癌症中心,6 巴西库亚巴马托格罗索联邦大学病毒学实验室,7 巴西圣保罗大学巴斯德科学平台,8 圣保罗国家免疫学研究科学技术研究所 (INCT) (iii)巴西圣保罗
使用特定指标的使用是由一组标准触发的,这些条件会随着用户从入门级到高级指标的发展而扩展。触发因素由生态系统,物种和强化土地使用生物群体进行分类:类别1:生态系统•入门级:影响高度威胁的生态系统的活动或与符合关键生物多样性领域或高保护价值标准的领域相互作用。•标准:扩展到与其他优先生态系统的交互。•高级:进一步扩展到符合脆弱或几乎受到威胁标准的生态系统。类别2:物种•入门级:影响高度威胁物种的活动,或符合关键生物多样性区域或高保护价值标准的物种。•标准:扩展到与其他优先物种相互作用。•高级:进一步扩展到对符合脆弱或几乎受到威胁的标准的影响,或在当地规模迅速下降的普通物种。类别3:强化土地使用生物群落•所有层次:年度农田,播种的牧场和田野,种植园和衍生的半自然牧场和旧田地生态系统类型,如全球生态系统类型学所定义。
1生物学实验室,健康科学细胞Mexicali,Mexicali的牙科学院,墨西哥,不列颠哥伦比亚省Mexicali的Noma de baja noma de baja,墨西哥,墨西哥2学院。 of the Health Mexicali, Faculty of Nursing ´ a Mexicali, Auto ´ noma University of Baja California, Mexicali, BC, Mexico, 4 Institute of Research in Sciences Me ´ dicas, Department of Closicas, Divisius of Biome ´ Dicas, University Center of Los Altos Mexico, 5 Microbiology Laboratory, Faculty of Medicine, Auto ´ noma University of巴哈加利福尼亚,蒂华纳,卑诗省,墨西哥
摘要生态系统服务部分源自生物学多样性,是对人类社会的基本支持。但是,人类活动对生物多样性造成了损害,最终危害了这些关键的生态系统服务。停止自然损失并减轻这些影响需要全面的生物多样性分配数据,这是实施Kunming-Montreal全球生物多样性框架的要求。为了有效地从公众那里收集物种观察,我们在日本启动了“生物群体”移动应用程序。通过采用物种识别算法和游戏化元素,该应用程序自2019年推出以来已收集> 600万的观察结果。但是,社区采购的数据经常表现出空间和分类偏见。物种分布模型(SDMS)在适应这种偏见的同时推断物种分布。我们研究了Biome数据的质量以及合并数据如何影响SDM的性能。物种鉴定精度超过鸟类,爬行动物,哺乳动物和两栖动物的95%,但是种子植物,软体动物和鱼类得分低于90%。对日本的132种陆地动植物的分布进行了建模,并通过将我们的数据纳入传统的调查数据来提高其准确性。对于濒危物种,传统的调查数据需要> 2,000个记录以构建准确的模型(Boyce指数≥0.9),尽管将两个数据源混合在一起时仅需要CA.300记录。独特的数据分布可能解释了这一进步:生物群落数据统一涵盖了城市 - 自然梯度,而传统数据则偏向自然区域。将多个数据源结合起来提供了对日本物种分布的见解,有助于保护区域名称和生态系统服务评估。提供一个平台来积累社区来源的分布数据和改进数据处理协议,不仅有助于保存自然生态系统,还将有助于检测物种分布变化和测试生态理论。
biome glacier iceberg Artic Antarctic polar tundra desert monsoon globe map longitude latitude continent ocean Equator North Pole South Pole Northern Hemisphere Southern Hemisphere county Earth solar system universe Tropic of Cancer Tropic of Capricorn Arctic Circle Antarctic Circle Earth's rotation axis compass point N, NE, E, SE, S, SW, W, NW, Mediterranean cliff location resort physical features human特色定居旅游区半岛礁侵蚀沉积潮汐风暴贸易