生物芯片技术包括一系列技术,这些技术对于生物芯片的开发、生产和在不同生物医学领域的应用至关重要。制造方法起着关键作用,通过微阵列生产技术(如点样、喷墨打印和原位合成),可以实现对生物分子的并行研究。通过微尺度流体操纵实现对生物反应的精确控制,微流体的集成大大改善了生物芯片的功能。为了确保通过化学功能化、物理吸附和生物共轭策略有效且有选择地将目标分子捕获在生物芯片表面,表面化学和生物分子固定方法至关重要。生物芯片技术严重依赖纳米技术,因为量子点、纳米线和纳米颗粒等纳米材料具有更好的标记、传感和信号放大能力。处理和分析生物芯片产生的海量数据集需要整合生物信息学工具和数据分析算法。这使得发现重要的生物系统见解成为可能。
通过核酸(DNA/RNA)分析检测病原体可提供病毒,细菌和原生动物病原体的快速,敏感,多重检测。在从各种样本类型(痰,尿液,拭子等)中提取核酸后,目标DNA/cDNA在单个反应中得到扩增,然后杂交到包含23个病原体特异性探针的生物芯片阵列。这个快速,高度敏感和特定的过程可以同时识别初级和共同感染,通常在无症状的患者中,并且具有许多病原体面板的能力。
在设计生物芯片时,弓箭手需要确保在同一芯片上的石墨烯场效应晶体管(GFET)之间的钾测试结果不会显着变化。在过去的几个月中,弓箭手团队一直在努力减少同一芯片GFET之间的测试结果的变化。这是通过在功能化过程中执行的弓箭手内部过程的开发来实现的,以使GFETS成钾传感器。这项工作已导致片上设备可变性的显着降低到1.5%。通过将变异性降低到1.5%的弓箭手现在能够在生物芯片发育中移动下一个阶段并开始对人类血液的测试。
石墨烯是一种碳的形式,具有许多有用的属性,包括低分子质量,极大的表面积,高热和电导率以及出色的机械强度。然而,阻止石墨烯广泛使用的一个局限性是其化学鲁棒性,在将无机分子连接到石墨烯表面上很难。
1 蒙特利尔理工学院生物医学研究所,蒙特利尔,QC H3C 3A7,加拿大; neda.azizipour@polymtl.ca 2 蒙特利尔理工大学化学工程系,蒙特利尔,QC H3C 3A7,加拿大; rahi.avazpour@polymtl.ca 3 麦吉尔大学外科系,蒙特利尔,QC H3G 1A4,加拿大; derek.rosenzweig@mcgill.ca 4 损伤、修复和恢复项目,麦吉尔大学健康中心研究所,蒙特利尔,魁北克省 H3H 2R9,加拿大 5 Polystim Neurotech 实验室,蒙特利尔理工学院电气工程系,魁北克省 H3T 1J4,加拿大 6 CenBRAIN 实验室,西湖大学西湖高等研究院工程学院,杭州 310024,中国 7 NSERC-工业主席,CREPEC,蒙特利尔理工学院化学工程系,蒙特利尔,魁北克省 H3C 3A7,加拿大 * 通讯地址:sawan@westlake.edu.cn (MS);abdellah.ajji@polymtl.ca (AA)
晶圆被切成丁,在阿切尔的外包半导体组件和测试(“ OSAT”)合作伙伴,日本的AOI电子产品中。OSAT过程包括该专用晶圆组件的成型,迪士和铅框架设计。这些新功能是推进生物芯片开发以与微型GFET芯片传感器设计相连和集成的关键。
这项最新作品建立在较早的GFET设计制造里程碑上,包括与德国铸造厂一起运行的MPW(ASXAnn。2023年11月9日),在荷兰的一个铸造厂奔跑的整个四英寸晶圆(ASXAnn。2023年9月14日),在西班牙铸造厂进行了六英寸的晶圆。Archer最近还通过大小的尺寸降低了其生物芯片GFET芯片设计,将小型芯片设计发送给了荷兰的铸造伙伴(ASXAnn。2024年3月11日)。
Archer 已经建立了一个 gFET 性能数据集,用于代工厂批次间重复性,并研究了设备在测试条件和时间段内的稳定性。这些数据集是 Biochip gFET 用于慢性肾病血钾检测可行性开发计划的关键输入。该团队通过开发第一版电气调节程序实现了这一目标,该程序将各个 gFET 设置为高测试间重复性条件。该程序将扫描电压重复性提高了 10 倍,直接转化为更好的钾测量精度。这对于实现慢性肾病血钾水平所需的高精度测量至关重要。Biochip 团队的示例结果显示了传感器对相关范围的钾浓度的电气响应,如图 1 所示。该团队在建立重复性和灵敏度基线方面取得了进展。在接下来的几个月里,工作将针对影响这一点的因素,并通过传感器操作、制造和设计不断改进,以满足钾精度规范。例如,当要检测传感器的 20mV 响应时,测量变化需要远小于 20mV。图 1 中的初始数据显示了这些指标迄今为止的进展。
Archer 正在继续前进 Archer Materials 正在继续推进其 12CQ 和 Biochip 的研发阶段,它的大多数同行也是如此。Archer Materials 的现金管理得很好,两年内没有筹集任何资金,截至 2024 年 3 月 31 日,银行账户中有 2000 万澳元。24 年度的一大亮点是成功制造了 Biochip 石墨烯场效应晶体管 (gFET) 设计,该设计通过由该公司在西班牙的代工合作伙伴 Graphenea 运营的 6 英寸整片晶圆完成。Graphenea 生产了 145 个芯片。这将有助于 Archer Materials 推进制造工艺,以大规模生产 gFET 芯片。2024 年 5 月中旬,我们亲眼目睹了其中的一些情况,参观了悉尼纳米科学中心研究和原型铸造厂 (RPF),Archer Materials 与其他公司共享该工厂以开发其技术。这将是本报告的重点。澳大利亚政府的量子赌注应会吸引更多投资 当一些投资者听到媒体报道政府正在投资 PsiQuantum 时,他们感到失望,他们不可避免地希望 Archer 自己获得投资。这是澳大利亚和昆士兰州政府与 PsiQuantum 合作对量子计算能力进行的一项更广泛的投资——它并不完全是一项股权发行交易。我们相信这笔交易将带来更多像 RPF 这样的设施,并可能带来更多来自成熟技术公司的投资,更广泛的澳大利亚量子计算生态系统将从这项投资中受益,进而受益于 Archer。
Archer 从其商业代工合作伙伴 Applied Nanolayers (“ANL”) 处获得了其 Biochip gFET 设计的微型化制造版本,整个四英寸晶圆在该公司的外包半导体组装和测试 (“OSAT”) 合作伙伴 AOI Electronics 处切割和组装。与早期的 10mm x 10mm 到 1.5mm x 1.5mm 设计(图 2)相比,该设计的尺寸已显著缩小,即缩小了 97%。整个四英寸晶圆生产了 1,375 个 gFET 芯片,而使用早期四英寸晶圆制造运行设计生产了 45 个 gFET 芯片。组装好的芯片目前正在 Archer 进行测试。更小的 gFET 降低了每个芯片的成本并提高了代工厂的准备程度。