在生物技术领域,为了加强引进国内外人才和投资,向市场提供产品和服务的体制(即创新生态系统),内阁府设立了开放申请程序,符合某些要求(例如世界级实力(科学和工业基础设施)、关键实体(工业、学术界、政府和/或金融)、关键人物的参与、网络组织履行协调、合作和其他职能的能力以及具体行动计划)的申请者将被认证为生物社区。世界上领先的“全球生物社区”在开发涉及从研发到商业化的各种实体的战略价值链方面处于领先地位,而“区域生物社区”则开展了自己独特的努力,除了每个站点的举措外,还建立了基地间互补合作的体系,并一直在推动提高日本认识的努力。我们将感谢您的关注,因为这本小册子总结了每个生物社区的特点、优势和活动。如果您需要更多信息,请随时与我们联系。
铁路通过交通,速度和负载在这些年来大大增加,促使行业利益相关者和研究人员寻求一种替代的卧铺材料,该材料可以证明其具有较高的在职弯曲抵抗力并具有环境友好和耐用的能力。为了满足这些需求,并且由于环境问题,KENAF增强的聚酰胺已变得非常重要。但是,由于其在这方面的性能不可用,因此无法用作铁路轨道组件。在弥合此差距时,本文着重于制造和表征处理过的六种不同配方的KENAF纤维(TKF,10%加载间隔时为0-50%),用于铁路卧铺应用。结果表明,TKF的掺入影响了聚酰胺在吸水,负载能力和热稳定性方面的行为。
DOI: https://dx.doi.org/10.30919/es1200 Anti-swelling Zwitterionic Nanocomposite Hydrogels with Biocompatibility as Flexible Sensor for Underwater Application Zhicheng Jiang, 1,2 Ruicheng Sha, 1 Yunbo He, 1 Mengshuang Wang, 1 Wenjing Ma, 3 Shuting Gao, 2 Mengni Zhu,1 Yue Li,1 Mengying Ni 1和Min Xu 1,*摘要水下活动的增加驱动了对水下柔性传感器的需求,这些传感器可以实时检测到人类和环境的各种信号,以提高工作效率并确保安全。但是,由于水中的水凝胶肿胀以及传感器的不友好性,水下传感器的制造仍然具有挑战性,这对用户和应用程序环境构成了重大风险。这里是一种基于水凝胶的传感器,由聚[2-(甲基丙烯氧基)乙基]二甲基 - (3-硫丙基丙基)氢氧化铵和细菌纤维素纳米纤维组成,具有自我粘附,生物相容性,生物相容性,以及使用环境友好友好的方法制造。zwitterionic官能团之间的静电相互作用(带正电荷的-r 3 n +组和带负电荷的 - SO 3-组)在水生环境中赋予水凝胶具有出色的抗静止行为。由于这些特征,水凝胶传感器能够监测空气和水下环境中的运动。基于水凝胶传感器,开发了一个智能通信系统,以促进水中的信息传输。此外,水凝胶传感器的出色生物相容性突出了其对用户和环境的安全性,展示了其对电子皮肤的巨大希望。因此,具有抗静止功能的生物相容性水凝胶传感器为促进可穿戴设备的开发提供了有希望的途径。
FDA 发布本指南草案,以描述用于医疗器械生物相容性评估的化学分析推荐方法。本指南中提供的建议旨在提高分析化学研究的一致性和可靠性,并基于 FDA 评估作为上市前提交文件的一部分提交的此类研究的经验,以证明器械的生物相容性。但是,进行化学表征的替代方法可能合适。此外,生物相容性评估所需的信息和/或测试类型可能因器械特性和预期用途而异。化学表征是制造商在制定器械整体生物相容性评估策略时可以考虑的一种方法。鼓励制造商在进行器械生物相容性评估的化学表征时,使用适合其特定目的的方法,并考虑到本指南文件中讨论的注意事项。
摘要 本文使用有限元建模模拟研究了羟基磷灰石涂层在全听小骨重建假体 (TORP) 中的应用,以提高这些用于中耳植入的假体的生物相容性和机械性能。我们重点评估了生物相容性材料,特别是聚醚醚酮 (PEEK) 和钛,通过分析它们在模拟条件下的机械行为。结果表明,PEEK 的机械性能几乎与钛相当,在中耳环境中表现出优异的稳定性和弹性。与钛相比,PEEK 具有几个关键优势,包括更容易制造、更容易获得以及羟基磷灰石涂层的应用流程简化。这些好处表明,PEEK 可以成为用于中耳假体的钛的一种非常有效的替代品。这项研究的结果凸显了 PEEK 在改善中耳植入物的设计和功能方面的潜力,为该领域未来的研究和开发提供了一个有希望的方向。通过利用 PEEK 的优势,我们可以提高中耳假体装置的有效性和可及性,最终使需要此类干预的患者受益。
摘要 有多种医疗应用利用生物材料来固定组织、输送药物和制造生物医学设备。本文对生物材料进行了相关分析,讨论了它们的分类、特点、生物相容性问题以及各种医疗用途或应用。本文将生物材料分为聚合物、陶瓷、金属和复合材料,并详细解释它们,重点介绍适合特定医疗目的的特定特性。根据本文,聚合物是一种适应性强的材料,可用作组织工程支架、人造血管或水性介质中的药物载体。本文谈到陶瓷时,陶瓷因其非凡的机械性能和生物活性而常用于骨替代材料。基本上,所有陶瓷(如磷酸三钙或羟基磷灰石)的成功率都较高,因为它们的矿物质含量高,使其成为牙科植入物的理想材料。钛、钴铬合金或不锈钢等金属已被广泛使用,因为它们具有很高的机械强度和耐腐蚀性,而这通常是骨内牙科植入物所必需的。因此,生物相容性在生物材料设计中被优先考虑,要求材料能够安全、舒适地与生物系统结合。事实上,生物材料技术的进步已经推动了创新材料的开发,通过表面调整和仿生涂层等技术来提高其生物相容性。所有这些技术在该领域都取得了巨大的发展,并对医疗行业有用。此外,本文还阐明了这些生物材料如何在医疗器械的机械开发中发挥重要作用,其中包括导管、植入式装置、药物输送系统和骨科植入物等。Ύ 的主要用途 通讯作者:bhavinprajapati.me@silveroakuni.ac.in。
在这项研究中,使用胶原蛋白和氧化石墨烯(RGO)合成创新的导电杂种生物材料,以用作伤口敷料。用甘油塑料胶原蛋白凝胶(COL),并用辣根过氧化物酶(HRP)交联。FTIR,XRD和XPS证明了组件之间的成功相互作用。证明,增加RGO浓度会导致更高的电导率和负电荷密度值。RGO还提高了通过降低生物降解速率表达的水凝胶的稳定性。此外,通过酶促交联和多巴胺聚合的聚合也增强了水凝胶的稳定性,对I型I型胶原酶的酶促作用也得到了增强。然而,它们的吸收能力达到215 g/g,表明水凝胶具有吸收液体的高电位。这些特性的上升对伤口闭合过程产生了积极影响,在48小时后达到了84.5%的体外闭合率。这些发现清楚地表明,对于伤口愈合目的,这些原始的复合生物材料可能是可行的选择。
摘要:在二十一世纪,工程纳米材料(ENM)吸引了兴趣的不断增长,在全球范围内彻底改变了所有工业部门。不断扩大的世界人口和新的全球政策的实施越来越多地推动社会迈向生物经济,重点是促进采用基于生物的纳米材料,这些纳米材料功能性,具有成本效益,并且潜在地暗示在不同领域,包括医疗领域,包括医疗领域。这项研究集中于基于生物的和合成起源的二氧化硅纳米颗粒(SIO 2 -NPS)。SiO 2 -NP由二氧化硅组成,二氧化硅是地球上最丰富的化合物。由于其特征和生物相容性,它们在许多应用中广泛使用,包括食品工业,合成过程,医学诊断和药物输送。使用斑马鱼胚作为体内模型,我们评估了与商用的亲水性粉丝NPS(SIO 2 -AerosiL200)相比,稻壳(Sio 2 -RHSK NPS)的无定形二氧化硅NP的影响。我们评估了在组织化学和分子水平上胚胎暴露于两种纳米颗粒(NP)的结果,以评估其安全性,包括发育毒性,神经毒性和促炎潜能。结果显示了两种二氧化硅NP之间的差异,这表明基于生物的SIO 2 -RHSK NP不会显着影响中性粒细胞,巨噬细胞或其他先天免疫系统细胞。
近年来,生物医学已广泛地集中在开发具有反应性行为和可自定义特性的生物学用途药物输送系统上。在药物载体中,水凝胶可以是合适的选择。由于它们具有特定的表面和结构,可以选择性地维护和运输药物到操作区域,因此它们以有利的时间范围释放,以提供更高的治疗作用。在这里,我们宣布在高内相乳液(HIPES)中宣布聚(藻酸钠(ALG)和2-羟基乙基甲基丙烯酸酯(HEMA))的共聚合物的合成,以产生高度多孔的水凝胶,以产生高度的多孔水凝胶,这些水凝胶已发育为化学疗法药物额肌蛋白(Dox)。可以随着聚合物合成程序中涉及的变量而改变孔隙率的百分比。发达的珠的特征是通过傅立叶变换红外光谱(FTIR),热重分析(TGA)和扫描电子显微镜(SEM)进行表征。在37和42°C的pH 5.4和7.4中研究了体外释放研究,这表明DOX有效地掺入了多孔水凝胶中,并通过pH调节和溶胀损失过程以控制的方式释放。在合成的聚螺旋结构中存在羟基和羧酸基团,增强了所得水凝胶的pH敏感性和肿胀行为,可以选择为响应肿瘤的酸性释放药物,以应对肿瘤的酸性状况,从而为局部局部和有效的癌症治疗提供了有希望的策略和有效的癌症治疗。
纵观历史,人类从大自然中汲取灵感和知识,揭开大自然的秘密并发挥其潜力。这种天生的好奇心影响了包括技术和医学在内的各个领域,推动了无数成就。虽然人工智能 (AI) 取得了重大进展,但用硅基硬件复制人脑的复杂过程仍然是一个挑战。这项研究引入了一种革命性的方法,它从人类大脑的复杂性中汲取灵感,人类大脑是已知的最复杂的生物系统。当代人工智能研究的目标是创造能够复制人类学习、推理和解决问题等认知功能的智能计算机。尽管软件和算法取得了显著进步,但完全模拟人类智力仍然是一个遥远的目标。传统的硅基硬件架构虽然令人印象深刻,但无法与大脑的自然并行性和适应性相匹配。因此,探索模仿生物系统的替代策略势在必行。