• 固体生物燃料是 21 世纪初期占主导地位的生物能源类型。然而,它们在能源中的使用份额几乎没有增长,在 2.0 到 2.4 EJ 之间波动。大多数固体生物燃料(~1.2 EJ)用于工业,可能是木材加工行业。在过去的两年中,水平再次略有上升。住宅供暖中固体生物燃料的使用量在 0.4 到 0.6 EJ 之间波动。用于发电的固体生物燃料使用量相当稳定,约为 0.4 EJ。• 液体生物燃料是生物能源的主要增长成分。特别是生物乙醇从 21 世纪初期的 0.12 EJ 增长到 2012 年的 1.2 EJ。这些水平近年来仅略有增加,达到 1.37 EJ,这可能与汽油中乙醇的混合壁有关。• 生物柴油水平低于生物乙醇。 2010 年至 2013 年间,该水平大幅增加,从 0.04 EJ 增加至 0.24 EJ。近年来,该水平相当稳定在 0.28 至 0.30 EJ 之间。• 过去几十年来,沼气(主要是垃圾填埋气)一直相当稳定在 0.15 EJ 左右。• 可再生 MSW 的使用也一直稳定在 0.15 EJ 左右。
9 另外两个模型没有考虑木质纤维素燃料生产中的 CCS,从而导致了不同的行为:GRAPE-15 模型通过使用第一代生物燃料实现运输脱碳,其原料不会在发电方面形成竞争(有关不同模型中第一代和第二代运输生物燃料的区别,请参阅 SOM 中的 A.3 节);IMACLIM-NLU 模型是唯一一个例外,它即使在没有 CCS 的情况下也在运输中使用木质纤维素燃料。在该模型中,生物质的跨部门分配不是采用成本效益方法进行的,而是独立进行的,以响应生物质原料市场价格(Leblanc 等人,本期)。10 运输用生物燃料也与其他用途存在竞争,例如在 IMAGE 模型中,它们使用 CCS 生产,但最终用于工业能源用途,并在一定程度上用于发电。 11 GCAM 模型在“高”政策情景中也具有较高的生物燃料份额(38%),而在其基线情景中则依赖于石油燃料和气体。12 只有少数模型发现“nobeccs”情景对于 1,000 GtCO 2 目标而言是可行的,因此在 SOM 中,我们提出了一个 1,600 GtCO 2 排放预算的情景,以讨论与 BECCS 可用性相关的敏感性。
需要大量的创新技术来实现可持续发展目标(SDGS)(Frankl 2020 I)。实现最不可能的可靠和可持续的能源系统是一个全球挑战。可再生能源对于所有能源部门的关键,直到最新世纪中期(到2050年2021年II)才能实现气候中性能源供应。在有利的政策环境,市场机会和大量成本降低的驱动下,可变的可再生能源(VRE)等可变的可再生能源(VRE)等越来越重要的能源是越来越重要的能源来扩展能源访问并基于清洁能源启用电气化。这实质上改变了电力系统的结构和操作,但也影响了热量和运输部门的可再生能源。
事件摘要确定基因功能是主要生物能源作物高粱 (L.) Moench 的一个重要目标,特别是与其显著的非生物胁迫耐受性相关的基因。然而,对与这些性状相关的基因的详细分子理解有限。我们对高粱进行的深入转录组研究表明了这一点,研究表明其近 50% 的转录组尚未注释。在本报告中,我们描述了转化高粱所需的全套工具,以便验证和注释基因。我们首先努力修改一种转化方法,该方法使用形态发生基因 Baby Boom 和 Wuschel2(胚珠发育蛋白 2)来加快转化速度并扩大适宜的基因型。根据我们的经验,转化不含形态发生基因的 RTx430 需要约 18 到 21 周,而使用含有形态发生基因的方法生成 T 0 植物则需要约 10 到 12 周。利用形态发生基因还可以转化几种以前未转化或历史上难以转化的高粱基因型,即快速循环 SC187、保绿 BTx642、BTx623 和甜高粱 Ramada。为了通过工程验证候选基因,同时引入形态发生基因,开发了一种称为利他转化的共转化策略。为了完成对目标基因(八氢番茄红素去饱和酶)的编辑,我们创建了新的构建体,其中也包括形态发生基因。为了能够全面表征转化植物,我们采用了技术来确定高通量水平的拷贝数和事件的独立性。通过这些努力,我们创建了一条从农杆菌感染到高通量分子基因分型的完整途径,可用于确定基因功能并加快这种广泛种植的生物能源作物植物的基础遗传研究。
图 4. 运输部门的生物燃料产量(2015-2017/2018 年、2030 年和 2050 年的计划能源情景和转型能源情景)以及转型能源情景中 2017 年和 2030-2050 年的生物甲烷产量 26
Agile BioFoundry 联盟 Agile BioFoundry 联盟平台联合了九个美国能源部国家实验室的独特能力,以探索有针对性的研发成果,例如通过使用合成生物学提高设计-构建-测试-学习生物工程循环效率、新的微生物宿主生物,以及通过知识产权和生物制造技术的转让实现市场转型。
藻类技术教育联盟藻类基金会启动了藻类技术教育财团(ATEC)项目,认可藻类生产将为基于生物的产品,饲料,燃料和食品提供可持续的生物质来源,为受过教育的劳动力创造高质量的就业机会。学术机构,国家研究实验室和行业领导者之间的合作伙伴关系是通过专注于支持Algal产品商业化所需的技能来制定新颖的教育计划来增强行业劳动力能力。
总体而言,TES已从2010年的8500 PJ下降到2022年的6400 PJ,降低了25%,化石燃料的下降最大。天然气仍然是最重要的能源。它的使用从2010年的3550 PJ下降到2014年的2500个PJ,但在2016 - 2019年期间(约2800 PJ)再次上升到更高的水平,以弥补煤炭电力下降的一部分。在2022年,与2021年相比(降至2520 PJ)的气体消耗下降了9%,这很可能与俄罗斯入侵乌克兰触发的天然气价格峰值有关。油产品的使用从2005年的3000 PJ下降到2011年的2500个PJ,并在该级别稳定到2019年。在2020年,当英国受到Covid-19的影响时,石油产品的使用降至2080 PJ,比2019年降低了15%。在2021年和2022年,石油产品略有回收,但仍低于2019年水平。煤炭在2013年的1500 PJ左右波动,占TE的20%的高峰(2012年)。但是,自2013年以来,煤炭水平急剧下降(85%),2019年仅占TES的3%以上。减少的一部分是通过将现有煤炭发电厂转换为生物量的。
总体而言,在过去十年中,美国的TES相对稳定,除了2020年的共同。石油产品和天然气是最重要的能源。在过去的十年中,石油产品的数量在32-33 EJ,占TES的36%左右。在2022年共同的一年级,石油产品下降了10%,这主要是由于运输活动减少。同时,水平已恢复到2019年的水平略低。天然气供应在2000年代(TES的25%)左右相当稳定,但是自2010年以来,该水平在2022年(TES的35%)稳步上升到32 EJ。尤其是自2018年以来,天然气的使用已大大增加。天然气的增加似乎在很大程度上弥补了煤炭下降。在2000年代(TES的24%)左右的煤炭消耗量非常稳定;自2010年以来,其使用稳步下降至2022年的10 EJ(占TES的11%)。核能在9 EJ(占TES的10%)左右相当稳定。
生物能源和可持续农业的交集呈现出动态的景观,并具有有希望的协同作用和潜在的冲突,需要仔细考虑。这项全面的评论探讨了生物能源生产与可持续农业实践之间的复杂关系,旨在阐明其整合固有的机遇和挑战。生物能源与可持续农业之间的协同作用在减轻气候变化的共同目标中很明显。生物能源作物,例如多年生草和木质生物量,可以隔离碳并有助于减少温室气体,并与强调环境管理的可持续农业原理保持一致。此外,随着农作物残留物和有机废物成为生产生产的有价值的原料,生物能源系统与农业实践的整合可以提高资源效率。但是,当土地利用竞争加剧时,可能会发生潜在的冲突。生物能源农作物的扩张可能会侵占指定用于粮食生产的土地,从而担心粮食安全和生物多样性损失。达到平衡需要仔细计划,考虑土地可用性,气候和社会经济因素的区域变化。此外,审查研究了推动生物能源和可持续农业共存的技术进步。精确农业技术,农林业和创新的种植系统作为优化土地使用,提高资源效率并最大程度地降低环境影响的工具。总而言之,生物能源和可持续农业的交织领域提供了复杂的协同作用和潜在冲突的挂毯。一种细微差别且特定于上下文的方法对于最大程度地提高收益至关重要,同时最大程度地减少不良影响。本评论提供了对当前知识状态的见解,强调了跨学科合作,政策框架和技术创新的需求,以确保生物能源生产与可持续农业之间的和谐共存。