摘要 :癌症已成为全球重大的社会经济负担,每年有数百万新病例和死亡病例。生物工程这一前景广阔的领域最近取得了重大进展,为抗击癌症提供了新方法。在各种遗传工具的可用性和技术的快速进步的支持下,人们越来越关注对人类疾病分子机制的理解。这些发展使得最新的基因治疗技术能够用于癌症治疗,包括基因编辑、基因缺失和通过 TALEN、锌指、RNAi、CRISPR、定点诱变 (SDM) 和酶疗法等方法纠正缺陷基因以调节催化活性。此外,生物工程疫苗(如 mRNA 疫苗)、生物信息学、计算工具、人工智能 (AI)、纳米技术和化学疗法正在成为重要的癌症治疗策略。其中,基因编辑和基因治疗近年来特别受到关注,并经常与其他治疗方法结合使用。酶工程和纳米技术的进步也取得了重大进展。人工智能和生物信息学有助于更精确地诊断、预测和预后,从而实现癌症和肿瘤的个性化治疗。人工智能增强的成像和放射治疗改善了手术效果,即使是在偏远地区。精准肿瘤学已经出现,利用细菌和病毒直接针对肿瘤。在这篇评论中,我们讨论了各种癌症疗法的最新进展和挑战。
BIOE 3050 - 系统生物学 (3 学分) 本课程重点介绍生物分子和细胞动力学的定量描述。课程将涵盖生物过程机械模型的构建和应用,包括受体-配体结合、酶促反应、信号转导途径、基因表达、细胞生长和死亡以及药代动力学。动态系统的数学和计算方法用于分析和设计复杂的生物网络。先决条件:ENGR 1100、BIOE 2020、CHEM 2031/2038、CHEM 2061/2068、MATH 1401、MATH 2411、MATH 2421、MATH 3195 和 BIOL 2020/2021,成绩为 C- 或更高。最多学时:3 学分。评分依据:字母等级先决条件:ENGR 1100、BIOE 2020、CHEM 2031/2038、CHEM 2061/2068、MATH 1401、MATH 2411、MATH 2421、MATH 3195 和 BIOL 2020/2021 成绩为 C- 或更高。
BIOE 5039 - 机电一体化和嵌入式系统 (3 学分) 本课程侧重于微处理器控制的机电系统的设计和构建。讲座回顾关键电路主题(欧姆定律、RLC 电路、直流和交流信号、二极管和晶体管电路、运算放大器和数字信号),介绍微处理器架构和编程,讨论传感器和执行器组件选择、机器人系统以及复杂多系统设备的设计策略。实验室工作巩固了讲座内容,并提供了机器人和嵌入式系统设计的实践经验。学生必须设计和构建与辅助技术相关的嵌入式系统设备。注意:可能会产生项目费用(最高 50 美元)。与 BIOE 4039 交叉列出。最大小时数:3 学分。评分依据:字母等级
BE 3060 细胞工程 生物细胞是一种复杂的机器,其功能是所有生理学和许多病理学的根源。分子和细胞生物学的最新进展使得重新设计细胞功能成为可能。本课程旨在定量了解细胞功能,以及我们如何通过智能重新设计来改变细胞功能。本课程涵盖的主题包括受体结合和内吞作用、细胞粘附和运动、免疫系统中的细胞功能、系统和合成生物学、使用 CRISPR 和基因疗法进行基因敲除和操作,以及包括嵌合抗原受体疗法 (carT) 在内的免疫治疗策略。秋季先修课程:CHEM 1022 和(MATH 2400 或 ENM 2400)和(PHYS 0140 或 PHYS 0150)和(PHYS 0141 或 PHYS 0151)和 BIOL 1121 和(ENGR 1050 或 CIS 1200 或 CIS 1210)1 课程单元
•持续四年的学士学位 - 生物技术,生物医学工程,生物信息学,药学,机械,机械,电气工程,电子与通信工程学,计算机科学,计算机科学•医学和手术课程五年•在任何生命科学,物理学,化学方面的硕士学位•Agri/vertimim fistrimie fistrimie/vertimial fistrimie fistrimien fistrimien•fisteriry fistrimion/vertimim fistrimien• 6对于gen/genews/obc和SC/ST/PWD类别的55%标记(或CGPA为5.5/10)
印度理工学院罗尔基分校 系/中心/学院名称:生物科学与生物工程系 学科代码:BEC-517 课程名称:生物分析技术 LTP:3-0-0 学分:3 学科领域:PCC 课程大纲:先进的生物物理和生化分析技术,包括光物质相互作用、显微镜、质谱和结构生物学。电泳、色谱、光谱和基因编辑技术。系统生物学概念:网络分析、随机性和基因调控网络。
人工智能是一个已有数十年历史的科学领域,近年来其在科学、经济和整个社会中的重要性和影响力不断提升。人工智能主要源于计算机科学,但受到其他科学领域的强烈影响,即数学、神经科学、语言学、心理学、哲学和物理学。在 21 世纪,人工智能取得了重大进展,特别是在机器学习和深度学习主导的领域。这些包括自然语言处理、计算机视觉、内容生成和推荐系统。人工智能已经对许多行业产生了重大影响,包括医疗保健、能源、金融、交通和制造业,并且在我们的日常生活中也发挥着越来越重要的作用,从虚拟助手到在线推荐系统。人工智能的符号遗产也非常重要,其根源在于数理逻辑、语言学和心理学。目前,符号方法为人工智能系统的可解释性和透明度开辟了道路。除了对大量高质量数据(用于正确应用)的基本需求之外,人工智能日益增长的影响力要求采取以人为本的方法,提高所提供工具的可信度,主要是预测和决策的可解释性、对未见过甚至不可预测的情况的推广,以及对有偏见的数据或不道德的结果的稳健性。
学期-I(秋季)1。BEC-521高级生物化学PCC 3 3 0 0 3 0 2。BEC-523细胞和分子生物学PCC 3 3 0 0 3 0 3。BEC-525应用微生物学PCC 3 3 0 0 3 0 4。BEC-527遗传学PCC 3 3 0 0 3 0 5。BEC-529发育生物学PCC 3 3 0 0 3 0 6。BEC-531 BSBE实验室-I PCC 4 0 8 0 4 7。社会科学课程SSC 2 -----总计21个学期-II(春季)1。BEC-522免疫学PPI 3 3 0 0 3 0 2。BEC-524基因工程PPI 3 3 0 0 3 0 3。BEC-526动物生物技术PPI 3 3 0 0 3 0 4。BEC-528植物生物技术PPI 3 3 0 0 3 0 5。BEC-530 BSBE实验室-II PPI 4 0 0 8 0 4 6。科学,技术和高级研究工具星3 ------- 7。BEC -700研讨会SEM 2 ----总计21
慢性伤口代表着一个重大的全球负担,造成数百万的并发症。尽管有标准护理,但由于持续的炎症和组织再生受损等因素,愈合受损仍然存在。间充质干细胞(MSC)衍生的细胞外囊泡(EV)提供了一种创新的再生医学方法,可在工程的纳米级输送系统中提供干细胞衍生的治疗货物。本综述研究了开创性的生物工程策略,以将MSC-EV纳入精确的纳米治疗药的慢性伤口。诸如CRISPR基因编辑,微流体制造和仿生递送系统等新兴技术的潜力,以增强MSC-EV靶向,优化治疗性货物富集并确保一致的临床级产生。然而,仍然存在关键障碍,包括批处理变异性,潜在肿瘤性,免疫原性和生物分布的严格安全评估。至关重要的是,协作框架与生物工程和患者的倡导协同统一的构图是加快全球临床翻译的关键。通过克服这些挑战,工程的MSC-EVS可以催化现成的再生疗法的新时代,恢复了不抗衡伤口的数百万肥胖的希望和康复。©2024作者。由Elsevier BV代表日本再生医学学会出版。这是CC BY-NC-ND许可(http://creativecommons.org/lice nses/by-nc-nc-nd/4.0/)下的开放访问文章。
高年级第一学期LEC实验室C第二学期LEC LEC C BNG 497 BIOENG。顶峰设计I 1 2 2 BNG 498 Bioeng。顶峰设计II 1 2 2 BNG 411生物工程实验室2 3 3 BNG 423生物系统分析和DSGN。3 1.5 3.5 BNG 428 MED设备注册。和Strat。3 0 3 BNG专业化3 0 3 BNG 451生物医学Eng的伦理。1 0 1 BNG专业化3 0 3 BNG专业化3 0 3大学研究4C 3 0 3大学研究4B 3 0 3 0 3 15 15 14.5总学分121 lec =讲座(小时)实验室=实验室=实验室(小时)C =学分数量的生物医学工程(BME)浓度是为希望扩大医疗应用的学生提供的浓度。为了以集中度毕业,学生必须拥有2.000 BNG的主要GPA和2.700 BME GPA,并完成课程中其他必需的课程。集中度包括一组八组生物医学工程基金会核心课程(列表A),一个生物医学工程核心课程(列表B),以及从批准的单元和组织工程清单(列表C)或医疗设备和制造业中选择的两种选修课(列表d)。BME集中的学生还将选择一个相关的高级设计项目。