此外,还将考虑学生,教职员工和其他利益相关者的反馈,以确保修改与大学的整体教育目标和使命保持一致。实施任何批准的更改将透明地传达给大学社区,并采取适当的措施来促进所有受影响方的平稳过渡。
认识到生物工程中的追求多样性,该计划提供了核心课程,对生物工程的中心以及代表当今生物工程的关键现代分区的一系列专业课程。该计划设想强大与行业联系。该课程是通过行业利益相关者的投入和反馈设计的。在整个计划中,参与了该行业的同事的参与。此外,还提出了沟通,管理和企业家精神的培训,这将使毕业生非常适合行业的职位。
第1章简介欢迎!本手册旨在概述佐治亚理工学院跨学科生物工程研究生计划(IBGP)的学生的政策,程序和学位要求。虽然本手册旨在回答有关计划政策和学位要求的大多数问题,但本手册中总会有某些情况可能没有明确涵盖。有关该程序的信息也可在IBGP网站上获得,位于http://www.bioengineering.gatech.edu/当似乎存在相互交流的信息时,该手册被认为比网站优先。请将所有问题引向IBGP Ofifece(计划管理中描述)。请注意:所有学术形式 - 学习计划,论文委员会,主题批准,候选和论文的完成必须被打字 - 也不例外。
我们有以下工具或软件用于大数据分析和生物标志物设计。CLC工作台,基因本体分析,底漆设计:RT PCR,下一代序列分析管道Schrodinger和DS模型,可通过将分子筛查,建模和药物设计提供高端工作站和服务器的支持。具有超快实时荧光和光学相干断层扫描和扫描激光显微镜的层析成像的生物素化学。脑电图,心电图和大脑计算机接口的多SPCTRAL成像和生物信号分析。控制理论,验证分析,生物分析技术等对人眼的荧光血管造影和光感受器成像的低成本,便携式,高速共聚焦激光眼镜检查(CSLO)系统的土著发展。
CRISPR/CAS9系统是一种基因组编辑的工具,可以对细胞的DNA进行精确有效的修改。这项技术可用于居住在植物内的内生真菌中,对其宿主产生有益的影响,使其对农业很重要。使用CRISPR/CAS9,研究人员可以将特定的遗传变化引入内生真菌基因组中,从而使他们能够研究基因的功能,改善其植物生长的促进特性,并创建新的,更有益的内生细胞。该系统通过使用CAS9蛋白(用作分子剪刀)来切割DNA在由导向RNA确定的特定位置上切割DNA。切割DNA后,可以使用细胞的自然修复机制插入或删除特定的基因,从而精确地编辑真菌基因组。本文讨论了CRISPR/CAS9对真菌内生菌的机制和应用。
陈实验室的研究重点是纳米技术和生物电子学,以智能纺织品、可穿戴设备和体域网络的形式应用于能源、传感和治疗。陈团队目前的 H 指数为 80,出版了 2 本书、200 篇期刊论文,其中 110 篇作为《化学评论》、《化学学会评论》、《自然材料》、《自然电子》、《自然通讯》、《科学进展》、《焦耳》、《物质》、《先进材料》等期刊的相应贡献。该团队还申请了 14 项美国专利,并获得了 1 项授权。该团队的努力最近获得了 Vebleo 研究员、Informa 评选的 30 位值得关注的生命科学领袖、加州大学洛杉矶分校赫尔曼研究员奖、先进材料新星奖、ACS 纳米新星讲师奖、化学学会评论新兴研究员奖等多项奖项的认可。除了研究之外,他还是《生物传感器》和《生物电子学》的副主编。
,由于其出色的特征,非规定的酵母菌吸引了人们日益增长的兴趣。近年来,CRISPR/CAS技术的出现提高了基因组编辑的效率和准确性。利用CRISPR/CAS在非规定酵母菌生物工程中的优势,已经取得了很多进步。由于其遗传背景中的多样性,建立各种非规定酵母的功能性CRISPR/ CAS系统的方式也是物种的特定物种。在本文中,我们总结了在不同规定的酵母中优化CRISPR/CAS系统的不同策略,及其在细胞工厂建设中的生物技术应用。此外,我们提出了一些潜在的方向,以扩大和改善CRISPR/CAS技术在非常规酵母中的应用。