副标题 B — 生物燃料研究与开发第 221 节 生物柴油。第 222 节 沼气。第 223 节 对某些州的生物燃料生产研究与开发的补助。第 224 节 生物炼油厂的能源效率。第 225 节 使用 E-85 燃料的灵活燃料汽车优化研究。第 226 节 使用生物柴油相关的发动机耐久性和性能研究。第 227 节 天然气汽车中使用的沼气优化研究。第 228 节 藻类生物质。第 229 节 生物燃料和生物炼油厂信息中心。第 230 节 纤维素乙醇和生物燃料研究。第 231 节 生物能源研究与开发,拨款授权。第 232 节 环境研究与开发。第 233 节 生物能源研究中心。 234. 大学研究与开发资助计划。
玉米乙醇是传统生物燃料的一个例子。美国每年生产的传统生物燃料的量不到 200 亿加仑,这是美国环境保护署根据 2019 年可再生燃料标准计划标准和 2020 年生物质柴油产量设定的要求。1 为了满足这些标准,传统生物燃料被混合到石油基燃料中;例如,乙醇与汽油的混合比例高达 10%。然而,车辆和设备制造商、消费者和燃料供应商担心这些燃料与现有石油基系统的兼容性。为了解决这些问题,美国能源部正在努力制造与现有车辆、炼油厂基础设施以及将石油运送到当地加油站储存设施的现有管道和卡车兼容的直接生物燃料。
23)生物燃料生产欧洲消费的农作物需要5.3 MHA土地,这是丹麦的大小。5.3 MHA考虑了生产生物燃料生产所需的土地利用。没有这种包含的欧洲生物燃料消费将需要9.6 MHA的土地。运输与环境与乐施会,生物燃料:真正的气候解决方案的障碍(2023年3月)https://www.transportenvironment.org/articles/biofuels-an-obstacle-to-an-obstacle-to-real-climate-climate-climate-climate-climate-climate-climate-soltionse。
副标题 B — 生物燃料研究与开发第 221 节 生物柴油。第 222 节 沼气。第 223 节 对某些州的生物燃料生产研究与开发的补助。第 224 节 生物炼油厂的能源效率。第 225 节 使用 E-85 燃料的灵活燃料汽车优化研究。第 226 节 使用生物柴油相关的发动机耐久性和性能研究。第 227 节 天然气汽车中使用的沼气优化研究。第 228 节 藻类生物质。第 229 节 生物燃料和生物炼油厂信息中心。第 230 节 纤维素乙醇和生物燃料研究。第 231 节 生物能源研究与开发,拨款授权。第 232 节 环境研究与开发。第 233 节 生物能源研究中心。 234. 大学研究与开发资助计划。
对于废物和残留物,对原产地点有特别的重点,因为这是供应链元素,在这种链接元素中,确定原材料是否符合废物或残留物的定义。此外,对于废物的起源或残基的起源点,采用了不同的风险方法,与农业或林业的(耕种)生物量相比,审计的频率和强度差异。废物和棕榈油厂产生的残留物,例如棕榈油磨坊废水(POME)或空棕榈果束(EFB),并且可以从这些物质中回收的各自的油被认为是“高级”原材料,该材料是根据红色II的附件IX的一部分。红色II设置了高级生物燃料的强制性目标,即由附件IX A.高级生物燃料的强制性目标增加到3.5%,直到2030年。同时,在红色II中指定的是“高ILUC风险生物燃料”,应逐步淘汰,因此不能用于红色II目标。该指南文件和随附的措施是由ISCC及其利益相关者制定的,以减轻潜在的(欺诈)风险,这是由于对棕榈油厂中对“先进”废物原材料的需求不断增长所致。
• 固体生物燃料是 21 世纪初期占主导地位的生物能源类型。然而,它们在能源中的使用份额几乎没有增长,在 2.0 到 2.4 EJ 之间波动。大多数固体生物燃料(~1.2 EJ)用于工业,可能是木材加工行业。在过去的两年中,水平再次略有上升。住宅供暖中固体生物燃料的使用量在 0.4 到 0.6 EJ 之间波动。用于发电的固体生物燃料使用量相当稳定,约为 0.4 EJ。• 液体生物燃料是生物能源的主要增长成分。特别是生物乙醇从 21 世纪初期的 0.12 EJ 增长到 2012 年的 1.2 EJ。这些水平近年来仅略有增加,达到 1.37 EJ,这可能与汽油中乙醇的混合壁有关。• 生物柴油水平低于生物乙醇。 2010 年至 2013 年间,该水平大幅增加,从 0.04 EJ 增加至 0.24 EJ。近年来,该水平相当稳定在 0.28 至 0.30 EJ 之间。• 过去几十年来,沼气(主要是垃圾填埋气)一直相当稳定在 0.15 EJ 左右。• 可再生 MSW 的使用也一直稳定在 0.15 EJ 左右。
•“遵循重铸可再生能源指令的要求(2018/2001/ec),第31(1)-31(3)条,附件V和VI以及对认证的执行法规(ISCC),ISCC需要最低水平的GHG储蓄来用于最终的生物燃料,Bioliquids和BioMass Fuels的运行,或者必须考虑到“安装”•“燃料的安装”,或者必须考虑一定的工具。电力已经开始(即一旦生产了包括生物燃料,沼气或生物燃料的燃料,或者开始产生热量,加热或发电的生产)。 •“具有/没有存储的交易者无需计算温室气体排放。相反,他们必须在可持续性声明中提供对下一个供应链要素的运输方式和距离。” •“对于RFNBOS ISCC,基于RED II第25条第2款,第22条和第25条第2条中提到的COM DA的单独指导文件。” •“适用以下全局变暖电位:CO 2 = 1,CH 4 = 28,N 2 O = 265”
● 限制单一计算的(非附件 IX)中间作物不计入 RES-T 目标,例如将其纳入食品和饲料上限(第 2.3 节) ● 要求经济运营者提供更多有关遵守生物燃料可持续性标准的信息,并披露每个燃料供应商的信息以提高透明度(第 1.1 节) ● 将先进生物燃料的子目标保持在 3.5%,将 RFNBO 的子目标提高到 2%(第 3.2 节) ● 限制或排除有问题的附件 IX 原料,如中间作物、在严重退化的土地上种植的作物、林业残留物等,不计入子目标或可再生能源目标(第 3.2 节) ● 将动物脂肪类别 3、棕榈脂肪酸馏出物(PFAD)、糖蜜和皂脚及其衍生物、以及 UCO 和动物脂肪类别 1 和 2 的进口排除在运输可再生能源目标之外 ● 确定国内先进和废弃生物燃料的供应,特别关注废弃物分级、级联原则、生物多样性和生态系统服务(第 3.2 节)● 通过全面审查生物燃料认证体系打击欺诈行为(第 3.2 节)● 直接电气化和专门的信用机制(包括私人充电)用于奖励交通运输中使用可再生电力应成为道路部门脱碳的优先事项。对于较难电气化的行业,如航空和长途运输,应进一步推广氢基燃料。(第 3.1 节)
开发了一个炼油厂建模框架,以估算将高质量生物燃料直接与炼油厂汽油成分混合以生产优质燃料的效益。研究结果提供了一种范式的变化 - 生物燃料不是化石燃料的竞争对手,而是可以为炼油厂的产品结构增加价值,因为它具有良好的特性。这个潜在价值可以通过计算盈亏平衡值 (BEV) 来表征,定义如下。提出的建模框架结合了来自 (1) 未来几十年的预计产品需求、(2) 原油和炼油产品定价以及 (3) 燃料规格的大量数据。完整的炼油厂模型可作为评估生物燃料价值的基础,假设代表性石油炼油厂配置的盈利能力保持不变。考虑到混合水平和原油价格,得出的估值差异很大,BEV 在 10 至 120 美元/桶之间。此外,BEV 与燃料辛烷值(如辛烷值(研究法,RON 和马达法辛烷值,MON)和抗爆指数(AKI,RON 和 MON 的平均值)以及敏感度(S,RON 和 MON 之间的差异))相关,与敏感度的相关性略高。然而,在一切照旧的情况下,未来几年汽油需求的预期下降可能会对生物燃料的需求和价值产生负面影响。分析还显示,小型炼油厂的估值较高,因为它们可以增强生产特种高价值燃料/产品的能力,并将高辛烷值桶引入原本受限的混合操作。对炼油厂的其他影响包括重新平衡运营的机会、进入高价值燃料市场的机会以及与更广泛的运输行业趋势同步的机会。此外,结果表明,Co-Optima 增强火花点火 (BSI) 效率提升的价值可以扩展到炼油厂,以激励脱碳和多样化原料生产。
生物燃料、合成电子燃料和氢气均被视为未来可持续航空燃料。生物燃料和合成电子燃料面临的主要挑战分别是原料供应和成本;但两者都需要对燃气涡轮发动机进行最小程度的改变。氢燃料是实现零碳航空的另一种潜在途径,其主要挑战是建立燃料供应基础设施。将氢燃料引入 UHBR 发动机需要在热系统、燃料系统和燃烧系统方面采取技术措施。