沼气植物的部署固有地取决于地理考虑。这项研究主张将地理数据与人工智能算法(称为Geoai)整合在一起,作为一种可靠的可靠方法,用于精确预期这些最佳位置。考虑到上述,这项研究努力预测为在农业中实施甘蔗沼气植物的最佳地点。通过利用涵盖物理,生物和人类方面的地理数据,以及使用六种不同的分类算法的利用(CART,C4.5,C5.0,Random Forest,XGBoost和GBM),性能比较变得很重要。训练阶段特别针对圣保罗的状态,由于其植物的浓度升高,其最有效的模型随后应用于Goiás状态。随机森林算法实现的杰出性能强调了其在描述Goiás甘蔗沼气植物部署的有利地点的功效。这种方法论方法在简化决策过程,描绘有利于甘蔗生产的沼气生产的地区有望,从而优化了生物量利用,并同时减轻了环境影响和安装支出。GEOAI的融合不仅促进了可再生能源的扩散,而且还为缓解气候变化而做出了实质性的贡献,从而促进了更广泛的全球能量转变。
AgSTAR 是由美国环境保护署 (EPA) 和美国农业部 (USDA) 赞助的一项合作计划,旨在推广使用沼气回收系统来减少牲畜粪便中的 CH4 排放。作为一项教育和推广计划,AgSTAR 传播与牲畜 AD 项目相关的信息,并将其汇总给实施、启用或购买 AD 项目的利益相关者。该计划的目标是提供信息,帮助利益相关者评估 AD 项目在特定位置的适用性,提供有关 AD 项目的益处和风险的客观信息,并传达 AD 项目在畜牧业中的状态。通过 AgSTAR 网站 (www.epa.gov/agstar) 以及在公共活动和其他论坛上,AgSTAR 传达公正的技术信息,并帮助为实施牲畜 AD 项目创造支持性环境。
图 1. 用于制造 RNG 的有机废物类型 ...................................................................................................... 2 图 2. LFG 处理阶段和沼气最终用途 ...................................................................................................... 3 图 3. AD 产品、沼气处理和最终用途 ...................................................................................................... 4 图 4. RNG 交付选项和典型的 RNG 最终用途 ...................................................................................... 5 图 5. 管道互连的组件 ............................................................................................................. 6 图 6. LFG-RNG-CNG 生命周期的示例 CI(g CO 2 e/MJ)............................................................. 13 图 7. 2018 年美国 LFG 到 RNG 项目的 CO 2 去除技术 ............................................................. 22 图 8. 2018 年美国基于粪便的沼气到 RNG 项目的 CO 2 去除技术 ............................................. 22 图 9. RNG 处理和互连成本明细 ............................................................................................. 31
1 [ nrg_cb_rw ] – 2018 年欧盟 27 国本土通过厌氧发酵生产沼气的情况。上次访问时间为 2020 年 5 月。 2 [ nrg_bal_s ] – 2018 年欧盟 27 国可供最终消费的可再生能源和生物燃料数量。 3 D. Peters 等人,2020-2050 年天然气脱碳途径,Guidehouse,2020 年;N. Scarlat 等人,沼气:欧洲的发展和前景,可再生能源 129 (2018) 457-472,2018 年;W. Terlouw 等人,天然气在净零排放能源系统中的最佳作用,Navigant,2019 年; D. Peters 等人,评估连续种植以生产低 ILUC 风险生物甲烷的案例,Ecofys,2016 年;L. Kemp,第二次收获:来自覆盖作物生物质的生物能源,自然资源保护委员会 (NRDC),2011 年。4 改进的技术,如最低耕作、精准农业和作物轮作以及新作物品种已经引入,应进一步支持这些技术,以帮助农业部门向脱碳转型。5 Biogasdoneright® 模式首先由 Consorzio Italiano Biogas (CIB) 在意大利推出,作为传统生产的农业生态转型,以可持续地供应生物甲烷。在同一块农田上,主要作物收获之前或之后种植其他作物。更多信息请访问 https://www.consorziobiogas.it/wp- content/uploads/2017/05/Biogasdoneright-No-VEC-Web.pdf
4国际气候变化改编计划,2013年。所罗门群岛的当前和未来气候。可在:https://www.pacificclimatechangescience.org/wp- content/uploads/2013/06/13_PCCSPSPSP_SOLOMON_ISLAMS_8PP.PDF 5所罗门岛5所罗门岛国家适应计划(NAPA),2008年。可在以下网址提供:https://www.adaptation-undp.org/resources/assessments-and-background-documents/solomon-islands-national-aptaptation-programme-action 6环境,气候变化,气候变化,灾难管理和气象学(MECDM),2012年,2012年。国家气候变化政策。可在以下网址提供:https://www.fao.org/faolex/results/details/details/en/c/lex-faoc167158/7环境,气候变化,灾难管理和气象学honiara,2016年,2016年。全国确定的贡献(NDC)。可在以下网址提供:https://unfccc.int/sites/default/files/ndc/2022-2022-06/ndc%20Report%202021%20final%20final%20Solomon%20Slands%20%20%20%281%29.pd9.pd9.pd9 pd9所罗门群岛国家能源政策2014。可在以下网址提供:https://policy.asiapacificenergy.org/node/2874 9 https://www.thegef.org/projects-operations-projects/projects/9787
摘要。世界对不可再生能源的依赖是不可持续的,而有机废物产生的沼气是一种有希望的可再生能源。但是,缺乏技术和了解沼气生产和利用的理解。这项研究旨在使用自助餐厅废物在实验室规模上生产沼气,并检查沼气生产的过程,以获取可变因素,例如保留时间,pH值和碱的增加。的发现表明,在具有特定pH值和温度范围的噬菌体条件下,在75天内,木瓜果皮,水,牛粪和底座的混合物在75天内产生了令人印象深刻的80.75%甲烷产量。然而,在沼气室中保持最佳的pH和真空会带来挑战,例如泄漏和pH波动。生产沼气的最佳比率是45-50%有机物和55-60%水的混合物,并仔细调节碱的添加,以确保最大的沼气产生和最佳的沼气质量。这项研究提供了对沼气生产的见解及其作为可行的生物燃料替代品的潜力。
摘要:印度是世界第二大稻生产商,占全球生产的20%以上。稻米是印度的主要农作物,覆盖了约4,300万公顷的土地。印度的主要水稻生产国家是西孟加拉邦,北方邦,旁遮普邦,安得拉邦和泰米尔纳德邦。有不同类型 /大米的品种,印度种植了6,000多种大米。流行品种包括basmati,茉莉和非 - 巴斯塔蒂。生产季节是哈里夫(6月至9月):主要的水稻种植季节和狂犬病(10月至3月):次要的水稻成长季节。平均收益率为2.5-3.5吨每公顷,每年总产量超过1.1亿吨。GOI采取了许多倡议,以促进印度的水稻种植,其中一些是国家粮食安全任务(NFSM),以增加水稻的产量,以及大米出口政策以促进出口。对全球大米的需求不断增长,激发印度培养越来越多的大米,并同样提高出口潜力。还可以转移并尝试新品种或多样化到其他大米品种。GOI必须确保可持续的水稻种植实践。种植越来越多的大米也会增加称为稻草的农业废物,在印度,稻草经常被燃烧,造成空气污染,但倡议促进了其用于生物能和堆肥的用途。在中国,日本和许多其他国家 /地区,使用稻草来进行生物能源,动物饲料和纸张生产。关键字:稻草,生物气,压缩生物气(CBG),绿色燃料,农业废物1.也是全球联合国食品和农业组织(FAO)促进了对生物能源,动物饲料和土壤修正的可持续使用,同样,国际能源机构(IEA)也将稻草视为生物营养和生物燃料的潜在原料。引言稻草,丰富的农业废物可以转换为沼气,这是一种干净可再生的能源。稻草的厌氧消化产生甲烷(CH4)和二氧化碳(CO2)的混合物,可用作烹饪,照明和发电的燃料。沼气生产过程涉及将稻草喂入消化池,在那里微生物分解有机物,释放沼气。然后收集,存储和利用气体。沼气具有许多好处:•可再生能源•减少温室气体排放•提供能源独立性•为农民创造额外的收入•最小化沼气所产生的废物和污染可以取代化石燃料,减少对不可租用能源的依赖。此外,消化的浆液可用作有机肥料,富集土壤健康。随着稻草的广泛供应,沼气生产具有巨大的潜力,可以促进可持续的能源未来。通过利用此能源,我们可以减少碳足迹并促进更清洁的环境。稻草,也称为稻草,是收获大米后留下的生物质。稻草在水稻生产国广泛使用,估计全球生产每年超过7亿吨。稻草主要由:
然而,我们可以回顾近几个月来国家层面所做的事情,在此期间,沿着转型和能源安全的道路采取了一些步骤,这可能是克服任何供应危机的重要杠杆。德拉吉政府在其任期的最后几个月里完成了一系列文件,并批准了一些措施,这些措施在某种程度上在国家层面上预见到了欧洲会议上所支持的内容:一方面对天然气价格设定上限,另一个是遏制能源消耗。事实上,《能源释放法令》规定以受控价格向可中断的工业客户、中小企业和岛屿(撒丁岛和西西里岛)用户出售电力:固定价格等于每兆瓦时 210 欧元,但可以根据实际情况进行修改。布鲁塞尔将建立的迹象。此外,《节能法令》还明确了冬季限用消费的方法。
沼气的升级产生一个Offgas,其中主要包含可再生CO 2和甲烷的残留比例,即所谓的甲烷滑动。通常,这种废气流是根据有效的调节 - 燃烧以减少甲烷排放的,或者它们被排放到环境中。自2023年3月以来,在Nesselnbach,Offgas进一步处理,将CO 2变成商业产品。CO 2清洁和液化厂是欧洲仅有的少数几个在食品级质量中提供生物CO 2的植物之一。CO 2是化学和食品行业的重要基础产品。需要大量生物源性,因此需要可再生和发射中性CO 2来代替化石CO 2,该化石CO 2目前是该行业中的标准。除了这样的应用外,所谓的碳捕获和利用率(CCU)可能会增加碳捕获和存储(CCS)技术的市场,其中CO 2在地下存储。