Capstone Green Energy 专注于四个关键业务部门。通过其能源即服务 (EaaS) 业务,该公司为其微型燃气轮机能源系统和电池存储系统提供租赁解决方案,并通过全面的工厂保护计划 (FPP) 产品提供售后零件和综合服务合同。能源发电技术 (EGT) 由该公司行业领先、高效、低排放、弹性的微型燃气轮机能源系统驱动,除了提供广泛的客户定制解决方案外,还提供可扩展的解决方案,包括混合能源系统和大型工业涡轮机 Baker Hughes。能源存储解决方案 (ESS) 部门设计和安装微电网存储系统,使用电池技术和监控软件的组合创建定制解决方案。通过氢能解决方案 (H&S),Capstone Green Energy 为客户提供各种氢产品,包括该公司的微型燃气轮机能源系统。
1 Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。 13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。Max Planck复杂技术系统动态研究所,德国Magdeburg 39106 2系统微生物学,莱布尼兹生物工程系,莱布尼兹农业工程和生物经济研究所科学,柏林TechnischeUniversität,Ernst-Reuter-Platz 1,10587柏林,德国4研究所4农业和城市生态项目,柏林洪堡大学(IASP),Philippstr。13,13,10115德国柏林5个生物系统工程部,洪堡大学,伯林大学,阿尔布雷希特 - 阿尔布雷希特--weg 3,3,14195柏林,德国6柏林6号糖科学司,化学科学工程科学学院化学科学,化学,生物技术和健康(CBH)的化学科学学院,鲁斯(CBH)。 21, 10691 Stockholm, Sweden 7 Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany 8 Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany * Correspondence: benndorf@mpi-magdeburg.mpg.de†这些作者对这项工作也同样贡献。
资料来源1美国环境保护局(EPA),“厌氧消化如何?”访问2021年6月。链接:https://www.epa.gov/agstar/how-does-anaerobic-digestion-work。2 Gittelson P.等人,“沼气的错误承诺:为什么沼气是一个环境正义问题”,环境正义,2021年5月。链接:https://www.liebertpub.com/doi/10.1089/env.2021.0025。3 EPA。 “厌氧消化如何起作用?” https://www.epa.gov/agstar/how-does-anaerobic-digestion-work 4马里兰州农业部(MDA),“ Cleanbay Renewables”,2022年6月。 链接:https://mda.maryland.gov/resource_conservation/pages/cleanbay_renewables.aspx; Cleanbay Renewables Delmarva,2022年6月访问。 链接:https://cleanbaydelmarva.com/; Chesapeake Utilities Corporation,“ Cleanbay Renewables,Inc。可再生天然气项目”,2022年6月访问。 链接:https://chpk.com/corporate-responsibility/economic- developmin/cleanbay-renewables-rng/。 5 Cleanbay Renewables Delmarva,2022年6月访问。 链接:https://cleanbaydelmarva.com/; Rush,Don,“争夺鸡肉垃圾加工厂(乔治敦 - 第1部分)”,Delmarva公共媒体,2021年12月9日。 链接:https://www.delmarvapublicmedia.org/local-news/2021-12-09/battle-over-chicken-chicken-litter-plant-plants-plants-georgetown-part-part--part--1。 6麦克阿瑟(MacArthur),罗恩(Ron),“生物能源揭示了回收设施的计划”,《宪报》,2021年2月26日。 链接:https://www.capegazette.com/article/bioenergy-reveals-plans-plans-recycling-facility/215697。 7下东岸马里兰州,“透视项目:天然气管道扩展”,2022年8月22日访问。3 EPA。“厌氧消化如何起作用?” https://www.epa.gov/agstar/how-does-anaerobic-digestion-work 4马里兰州农业部(MDA),“ Cleanbay Renewables”,2022年6月。链接:https://mda.maryland.gov/resource_conservation/pages/cleanbay_renewables.aspx; Cleanbay Renewables Delmarva,2022年6月访问。链接:https://cleanbaydelmarva.com/; Chesapeake Utilities Corporation,“ Cleanbay Renewables,Inc。可再生天然气项目”,2022年6月访问。链接:https://chpk.com/corporate-responsibility/economic- developmin/cleanbay-renewables-rng/。5 Cleanbay Renewables Delmarva,2022年6月访问。链接:https://cleanbaydelmarva.com/; Rush,Don,“争夺鸡肉垃圾加工厂(乔治敦 - 第1部分)”,Delmarva公共媒体,2021年12月9日。链接:https://www.delmarvapublicmedia.org/local-news/2021-12-09/battle-over-chicken-chicken-litter-plant-plants-plants-georgetown-part-part--part--1。6麦克阿瑟(MacArthur),罗恩(Ron),“生物能源揭示了回收设施的计划”,《宪报》,2021年2月26日。链接:https://www.capegazette.com/article/bioenergy-reveals-plans-plans-recycling-facility/215697。7下东岸马里兰州,“透视项目:天然气管道扩展”,2022年8月22日访问。链接:https://lesmd.net/projects/natural-gas-pipeline-extension。8 Grubert,Emily,“大规模可再生天然气系统可能是气候密集的:甲烷原料和泄漏率的影响”,环境研究信,2020年8月。 链接:https://iopscience.iop.org/article/10.1088/1748-9326/ab9335;美国EPA,“废物减少模型中使用的温室气体排放和能量因素的文档(温暖):管理实践章节。” 2020年11月。 链接:https://www.epa.gov/sites/default/files/2020-12/documents/documents/harm_management_practices_v15_10-29-29-2020.pdf。 9 Storrow,本杰明,“甲烷泄漏消除了天然气的一些气候益处”,E&E新闻,2020年5月5日。 链接:https://www.scientificamerican.com/article/methane-leaks-erase-some-some-of-the-climate-benefits-of-natural-gas/。 10假设生物能源Devco和CleanBay可再生能源项目将产生180万MCF的可再生天然气,泄漏率为2%至15%。 GHG等效性基于甲烷的20年全球变暖潜力(即甲烷的效力是二氧化碳的84倍)。 11马里兰州环境部(MDE),“新COMAR 26.11.41的技术支持文件,新法规.01至.07在新章COMAR 26.11.41控制天然气行业的甲烷排放控制”,2020年7月。。8 Grubert,Emily,“大规模可再生天然气系统可能是气候密集的:甲烷原料和泄漏率的影响”,环境研究信,2020年8月。链接:https://iopscience.iop.org/article/10.1088/1748-9326/ab9335;美国EPA,“废物减少模型中使用的温室气体排放和能量因素的文档(温暖):管理实践章节。” 2020年11月。链接:https://www.epa.gov/sites/default/files/2020-12/documents/documents/harm_management_practices_v15_10-29-29-2020.pdf。9 Storrow,本杰明,“甲烷泄漏消除了天然气的一些气候益处”,E&E新闻,2020年5月5日。链接:https://www.scientificamerican.com/article/methane-leaks-erase-some-some-of-the-climate-benefits-of-natural-gas/。10假设生物能源Devco和CleanBay可再生能源项目将产生180万MCF的可再生天然气,泄漏率为2%至15%。GHG等效性基于甲烷的20年全球变暖潜力(即甲烷的效力是二氧化碳的84倍)。11马里兰州环境部(MDE),“新COMAR 26.11.41的技术支持文件,新法规.01至.07在新章COMAR 26.11.41控制天然气行业的甲烷排放控制”,2020年7月。链接:https://mde.maryland.gov/programs/regulations/air/documents/tsd_ng_methane.pdf 12 kreidenweis,U。等,“肉鸡肥料治疗中的温室气体排放量是在良好的biogas生产中最低的,链接:https://doi.org/10.1016/j.jclepro.2020.124969。13 Gittelson P.等人,“沼气的错误承诺:为什么沼气是环境正义问题”,环境正义,2021年5月。链接:https://www.liebertpub.com/doi/10.1089/env.2021.0025。14 Alvarez,R。等人,“美国石油和天然气供应链中甲烷排放的评估”,科学,2018年6月。链接:https://www.science.org/doi/10.1126/science.aar7204。15 Foehringer商人Emma和Grace Van Deelan,“甲烷捕获在奶牛场,但该计划可能会带来'意想不到的后果',”内部气候新闻,2022年9月19日。链接:https://insideclimatenews.org/news/19092022/dairy-digesters-methane-california-manure/。
摘要。沼气是一种富含甲烷的气体,该气体是由废物的微生物消化(农业,污水和土地填充)产生的,可用于发电。厌氧消化酯的沼气生产率低成为牛粪加工的可能性。沼气的产生受到甲烷菌细菌的生物量的影响,在消化酯中含有有机物的转化中,因此需要其他甲烷作菌细菌来加速生物含量产生的速率,即从牛肉量厌氧酯类蒸发酯的甲烷基础上加速甲烷质。细菌分离。这些样品在厌氧腔中在37°C下孵育,分离后,通过几种生化测试鉴定细菌。基于进行的研究,单个甲烷菌细菌的单个菌落是革兰氏阴性细菌,其中分离株的结果表明甲烷杆菌属的细菌。通过添加15%V/V的细菌分离株获得了最高的沼气产生。可以从40 mL产生的沼气体积中看到发酵过程的14天。
然而,我们可以回顾近几个月来国家层面所做的事情,在此期间,沿着转型和能源安全的道路采取了一些步骤,这可能是克服任何供应危机的重要杠杆。德拉吉政府在其任期的最后几个月里完成了一系列文件,并批准了一些措施,这些措施在某种程度上在国家层面上预见到了欧洲会议上所支持的内容:一方面对天然气价格设定上限,另一个是遏制能源消耗。事实上,《能源释放法令》规定以受控价格向可中断的工业客户、中小企业和岛屿(撒丁岛和西西里岛)用户出售电力:固定价格等于每兆瓦时 210 欧元,但可以根据实际情况进行修改。布鲁塞尔将建立的迹象。此外,《节能法令》还明确了冬季限用消费的方法。
减少收获后粮食损失可以为农民带来经济效益,提高粮食安全,并减少有机废物产生的甲烷排放。尽管印度在 2020 年全球饥饿指数中排名第 94 位(共 100 个),但据估计,该国生产的粮食有 30% 被损失或浪费(Bagai,2020 年)。印度近一半的收获后粮食损失归因于缺乏可靠的冷链、综合冷藏设施网络、运输和营销技术,这些技术无法保证从收获到消费者的整个过程中食品的质量(Peters 等人,2019 年)。冷链技术是能源密集型的,通常由化石燃料提供动力。近年来,人们一直关注清洁能源驱动的冷链解决方案,包括可再生能源驱动的冷藏设施,可在收获后立即储存商品。
摘要:本文介绍了使用 Cambi THP ® 技术对污水污泥 (SS) 进行厌氧消化 (AD) 并进行热水解 (THP) 后获得的沼气的能量潜力。所列数据为 Tarn ów (波兰) 污水处理厂 2020 年的数据。文中给出了沼气的详细能量平衡及其在热电联产过程中以及在水锅炉和蒸汽锅炉中产生热量时的使用情况。本文包含工艺流程不同阶段处理的 SS 量以及干物质和干有机物含量的数据。该工厂年运行期间,处理了来自 Tarn ó w 污水处理厂 (WWTP) 和区域 WWTP 的 8684 吨市政 SS 干固体 (tDS),生产出 3,276,497 Nm 3 沼气。所生产沼气的能量潜力为 75,347.06 GJ。沼气的平均热值为 23,021 kJ/Nm 3。获得的沼气产量可满足 THP 100% 的热能需求。研究期间的年平均比沼气转化率为 0.761 Nm 3 /kg 干有机物减少,污泥中有机物含量平均减少量为 64.60%。
随着北卡罗来纳州努力实现迅速临近的温室气体 (GHG) 减排目标,政府官员越来越迫切地希望开发州内可再生能源或清洁能源资源。2019 年,州长 Roy Cooper 发布了第 80 号行政命令,制定了雄心勃勃的温室气体减排目标,并呼吁制定清洁能源计划,使该州的能源使用走上碳中和的道路。清洁能源计划的另一个目标是“加速清洁能源创新、开发和部署,为该州的农村和城市地区创造经济机会。”1 州长 Cooper 的脱碳目标最近在 H. 951 中被编入法典,该法指示北卡罗来纳州公用事业委员会“采取一切合理措施”实现这些目标。2
为了实现可再生能源目标,包括马来西亚在内的许多发展中国家都承认采用废物转化为可再生能源 (WTRE) 技术是最好的手段。将动物粪便转化为沼气是类似的技术之一。在相当长的一段时间里,马来西亚的畜牧业发展迅速,产生了大量的饲料,这些饲料可以作为生产沼气的原料。随着 WTRE 技术的实施,马来西亚开始使用一种合适的发电方法,即将动物粪便转化为沼气。马来西亚采用的另一种发电方法是将动物粪便转化为沼气。将动物粪便转化为沼气被认为是一种合适的发电方法。对于 WTRE 技术的应用,本文将研究这一现象。作为进一步的步骤,对马来西亚的废物管理问题和能源结构进行了彻底的分析。马来西亚目前面临的发电问题是优化新的和合适的能源。在这方面,WTRE 转型已被确定为能源转型的主要和不可避免的来源。本文解释了利用城市垃圾发电的各种技术。通过分析发现,马来西亚通过垃圾生产沼气能源的潜在能力巨大。马来西亚的动物粪便每年可产出高达 1,317.20 立方毫米的沼气,最终可产生 2.1 × 10 4 千瓦时/年的发电量。本文讨论了马来西亚实施长期沼气发电的相关政策。本研究未包括马来西亚和其他发展中国家 WTRE 面临的障碍,为未来的研究考虑这一研究维度提供了机会。
摘要:电动汽车(EV)的受欢迎程度在现代世界中日益增加。电网充电站的电动汽车充电会导致电网发生相当大的电力危机。现在认为可以将可再生能源资源(RESS)与电网中的常规能源整合在一起,以减少峰值功率需求和不可避免的排放效应。因此,本文提出了一种用于用两个Ress的EV充电的能量解决方案,即太阳能光伏(PV)和沼气。Homer软件用于分析太阳能PV和基于沼气的EV充电站的效力和功能。所提出的系统由太阳能光伏系统,两个沼气发动机发电机和带电池存储的双向转换器组成。在荷马软件中分析了不同成本的变化,例如不同太阳能PV系统(3 kW,4.5 kW,6 kW,6 kW和9 kW)的净现在成本(NPC),初始成本和能源成本(COE)。最终选择4.5 kW太阳能光伏系统作为NPC,初始成本和COE分别为$ 93,530,$ 19,735和0.181美元,这是有效的。该系统的寿命为25年,最初需要12年才能克服系统成本,其余13年将提供财务收益。该研究还说明了太阳辐照度,生物量以及能量管理系统负载的变化的影响。技术经济分析表明,所提出的方案可以是有效的能源解决方案。温室气体(GHG)的排放(GHG)大大减少。这项研究有望在具有技术经济和环境可行性的基于可再生能源的电动汽车充电系统中是有益的。