保留所有权利。未经许可不得重复使用。永久。预印本(未经同行评审认证)是作者/资助者,他已授予 medRxiv 许可,可以在此版本中显示预印本。版权所有者于 2025 年 1 月 29 日发布此版本。;https://doi.org/10.1101/2025.01.27.25321226 doi: medRxiv preprint
植物学和微生物学系,科学学院,Sohag University,Sohag,82524,埃及。*电子邮件:gem_gad@yahoo.com收到:2024年11月16日,修订:2024年12月2日,接受,接受:2025年12月19日在线发布:2025年2月7日,2025年2月7日摘要:曲线摘要(sumcc 22003)(sumcc 22003)是一种与药物的内生真菌相比,是一种与药物的叶子相比,该植物植物caltroproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproproprop- h.--埃及。根据形态和系统发育分析确定了真菌。研究了C. spicifera对生物合成银纳米颗粒(AGNP)的能力。使用UV-VIS光谱,XRD测量,DLS,ZETA电位分析,FTIR和HR-TEM分析来表征生物合成的AGNP。形成的AGNP稳定,分散且球形晶体,平均直径为38.41 nm,ZETA电位为-6.35 mV。FTIR分析证实AGNP用蛋白质封盖。生物合成优化研究表明,1 mM Agno3,5 g生物量重量,pH 10.5和60°C的反应温度是AGNPS生物合成的最佳条件。agnps在不同浓度上对革兰氏阴性细菌,革兰氏阳性细菌和酵母菌的测试物种发挥了显着的抗菌活性,表明它们作为广谱抗菌剂的潜力。大肠杆菌对AGNP(50 µg)的敏感性最高,抑制区直径为23.7±0.3 mm,MIC 4.2±0.1 µg。agnps(50 µg)的抑制区为16.7±0.1 mm,MIC对于白色念珠菌的抑制区为5.7±0.3。关键词:钙髓质Procera,细胞外生物合成,表征,优化,抗菌活性
与编码基因类似,miRNA 由 RNA 聚合酶 II 从 miRNA/MIR 基因转录成长的初级转录本,称为初级/pri miRNA(图1)。此后,pri-miRNA 被 RNaseIII 样酶(称为 DICER-LIKE (DCL 1))与其他蛋白质一起切割成前体/前 miRNA。这些前 miRNA 进一步由 DCL1 加工成 20-24 个核苷酸长的 miRNA:miRNA 双链体。然后,双链体在 3' 端被 HUA 增强子 1 甲基化,并通过 EXPORTIN-5 输出到细胞质中。然后将双链体加载到含有 ARGONAUTE (AGO) 蛋白的 RNA 诱导沉默复合物 (RISC) 中。来自 miRNA:miRNA 双链中只有一条 RNA 链被加载到 RISC 上,而另一条链被小 RNA 降解核酸酶降解。最后,加载的 miRNA 将 RISC 靶向其互补的 mRNA,因此,根据其与目标 mRNA 的互补程度,它可能导致两种结果。如果 miRNA 与目标 mRNA 高度同源,则可能导致 mRNA 的位点特异性裂解,而与目标 mRNA 的弱碱基配对则导致翻译抑制(图1)。
铁硫 (Fe–S) 蛋白对于产甲烷菌进行甲烷生成和生物固氮(固氮)的能力至关重要。尽管如此,产甲烷菌中 Fe–S 簇生物合成所涉及的因素仍然很大程度上未知。最小 SUF Fe–S 簇生物合成系统 (即 SufBC) 被假定为产甲烷菌中的主要系统。本文研究了 SufBC 在含有两个 sufCB 基因簇的 Methanosarcina acetivorans 中的作用。CRISPRi-dCas9 和 CRISPR-Cas9 系统分别用于抑制或删除 sufC1B1 和 sufC2B2 。在任何测试条件下,包括固氮,无论是 sufC1B1 和 sufC2B2 的双重抑制还是同时删除 sufC1B1 和 sufC2B2 都不会影响 M. acetivorans 的生长。有趣的是,仅删除 sufC1B1 在所有生长条件下都会导致生长延迟表型,这表明 sufC2B2 的删除在没有 sufC1B1 的情况下起到了抑制突变的作用。此外,删除 sufC1B1 和/或 sufC2B2 不会影响 M. acetivorans 细胞中的总 Fe-S 簇含量。总体而言,这些结果表明最小 SUF 系统不是 M. acetivorans 中 Fe-S 簇生物合成所必需的,并挑战了 SufBC 在产甲烷菌中 Fe-S 簇生物合成中的普遍作用。
虽然全球CO 2排放量仍在上升,并且在2023年达到了最高的大气CO 2浓度424 ppm [1],但将全球变暖以下的全球目标降至1.5°C以下以限制全球气候变化的不可逆转和有害影响的影响,越来越紧迫[2]。必须减缓气候变化至关重要的一种关键方法是从大气中清除CO 2并将其存储在碳汇中。由IPCC评估的发射途径将全球变暖限制为1.5°C或2100年,不仅需要减少排放量,还需要利用二氧化碳去除碳(CDR)。该术语描述了“故意从大气中删除CO 2并持久将其存储在地质,陆地或海洋储层中或产品中的人为活动” [3]。一个值得一提的例子是场景SR1.5,其中“所有分析的途径都将变暖限制为1.5°C到2100,而没有或有限的过冲,包括在某种程度上使用CDR来抵消人为CO 2发射和在所有风景中的CO 2移除中间的中位数,在所有情况下,所有情况下是730 Gt Co 2 in 21 St Centery in 21 Sten Centery of 21 sten Centery''[3] [3] [3] [3] [3] [3] [3]。必须强调所需的拆卸范围,从2050年开始,每年的1-2 GT CO 2每年20 GT CO 2不等[3]。
在最近的一份报告中,JRC描述了一种提供这种透明度的方法学方法:在“ -1/+1”方法中,基于生物的产品的碳足迹通过从大气中撤回的CO 2的数量降低,并将其作为碳掺入Bio-Mass衍生材料中。这种评估方法通过计算大气碳的掺入来为降低生物基产品的PCF提供透明度,而在该阶段1中,生命末期的排放反映了。但是,我们了解委员会考虑的碳建模选项之一是在“前景级别”上对“ -1/+1方法”的使用有限,同时在“背景级别”应用“ 0/0方法”,其中在生命周期的任何阶段没有学分或好处。
在四个市场中的产品和Tysabri®的几种最终配方,总共八个完成了LCA。具体而言,我们量化了Tysabri®(皮下和静脉注射)的潜在环境影响,包括土地利用,能源消耗,用水,温室气体排放和空气污染对在四个市场中分布的产品的影响,包括英国,包括:分析包括:材料选择的材料和实验室的材料,以及vials for froulasts for cartons for cartons for carts,能源使用,包括制造,分销和冷藏;医疗浪费和处置,包括在终止生命的焚化。我们还在努力评估替代材料和原产品分娩的方法,并减少了环境足迹。○2023年,Biogen开始评估使用PVC替代方案来推进我们的
使用绿色方法合成的MGO NP的平均大小确定为24 nm。分子对接分析的结果表明,MGO纳米颗粒对极性氨基酸Ser 30,ASP 37和Lys 39的α-葡萄糖苷酶具有强大的亲和力。在100 µg/ml的浓度下观察到生物MGO纳米颗粒的最高水平,并且证明它们是最强大的抑制剂,将酶活性降低了60%。使用各种剂量的MGO纳米颗粒,包括25 µg/ml,50 µg/ml和100 µg/ml,用于抑制癌细胞系的生长。然而,最高的浓度表现出最显着的抑制作用。还评估了MGO NP的功效,以确定视网膜色素上皮细胞系(RPE)确定其对正常细胞的影响。发现MGO NP明确影响目标区域而不会损害健康细胞。
摘要:随着城市为雄心勃勃的树冠层覆盖率增长和人为挥发性有机化合物(AVOC)排放的减少,因此对生物VOC(BVOC)对空气质量的影响的准确评估变得更加重要。在这项研究中,我们旨在量化未来城市绿化对臭氧生产的影响。在密集的城市地区的BVOC排放量通常在区域模型中粗略代表。我们建立了一个高分辨率(30 m)的梅根(自然版本3.2的气体和气溶胶排放模型),以估算纽约市都会区(NYC-Megan)的夏季夏季生物异戊二烯排放。与NYC-MEGAN异戊二烯排放的观察框模型耦合,成功地再现了城市核心中观察到的异戊二烯浓度。然后,我们从可能的城市绿色场景中估算了未来的异戊二烯排放,并评估了对未来臭氧产量的潜在影响。NYC-MEGAN预测,纽约市的异戊二烯排放量是炎热夏季的粗分辨率(1.33 km)生物发射库存系统3.61(BEIS)的两倍。我们发现,尽管大量的Avoc排放量大量,BVOCS即使在炎热的夏季,即使在炎热的夏季也可以驱动臭氧产量。如果种植了高异戊二烯发射物种(例如,橡木树),在城市核心中,未来的异戊二烯排放量可能会增加1.4-2.2倍,这将导致臭氧超过臭氧峰值的峰值峰值增加8-19 ppbv,而当前无X浓度。我们建议在NO X浓度较高的城市中种植非异戊二烯散发树,以避免未来臭氧超出事件的频率和严重性增加。关键字:异戊二烯,臭氧,空气质量,城市绿化,高分辨率,梅根,纽约■简介