1 西班牙穆尔西亚,埃斯皮纳多大学园区,CEBAS-CSIC(安全教育与应用生物学中心-高等科学技术研究委员会)植物育种系水果生物技术组,E-30100; mmartin@cebas.csic(MM-V.); cperez@cebas.csic.es (CP-C.); nalbur@cebas.csic.es (NA) 2 伊朗设拉子大学农学院园艺科学系,设拉子 7144165186; sama_rahimi@yahoo.com (社交媒体链接) smemahdavi@gmail.com (SMEM) 3 水果育种组,植物育种系,CEBAS-CSIC(教育、应用生物学和安全中心-高等科学技术研究委员会),埃斯皮纳多大学校区,E-30100 穆尔西亚,西班牙; gortuno@cebas.csic.es(GO-H.); jasalazar@cebas.csic.es (JAS) 4 匈牙利农业与生命科学大学水果种植研究中心,匈牙利布达佩斯 1223; bujdoso.geza@uni-mate.hu * 通信地址:pmartinez@cebas.csic.es;电话:+34-968-396-200 † 这些作者对这项工作做出了同等贡献。
1 Leloir Instit,布宜诺斯艾利斯 - 国际科学与技术研究理事会(CONICET),布宜诺斯艾利斯C1405BWE,阿根廷2生理学,分子生物学和神经科学研究所(Ifibyne-uba-uba-conicet)(ifibyne-uba-conicet)(ifibyne-buba-conicet)和天然科学的科学杂志,生物学和分子生理学,生物学教师,生物菲尔德大学,比尔 - 菲尔德大学33615,德国4分子生物学系,麦克斯·普朗克生物学研究所,蒂宾根72076,德国72076,德国5分子和细胞生物学研究所(CSIC-POLITECEA)(CSIC-POLITECEA),SPIELITEA GRUTIONEA 4660222222222222222.大学,UMEA SE-901 87,瑞典
1 瓦伦西亚理工大学高等科学研究委员会植物分子和细胞研究所,ES-46022 瓦伦西亚,西班牙; gapizzio@gmail.com (差距); crimaru1@ibmcp.upv.es (CM); lojujo@ibmcp.upv.es(JL-J.); vicgarb4@upvnet.upv.es(VG-C.); marvazvi@ibmcp.upv.es(MV-V.); dorzaez@ibmcp.upv.es (DO) 2 工厂生产系,瓦伦西亚理工大学,ES-46022 瓦伦西亚,西班牙; sergonne@ebvg.upv.es 3 PMI 研发部,菲利普莫里斯产品公司,Quai Jean Renaud 5,CH-2000 Neuchâtel,瑞士; kacper.kaminski@pmi.com(KPK); nikolai.ivanov@pmi.com (NVI) 4 圣地亚哥德孔波斯特拉大学有机化学系单一分子研究中心 (CiQUS),15782 圣地亚哥德孔波斯特拉,西班牙; juancarlos.estevez@usc.es 5 西班牙马德里岩石与矿物学研究所,晶体结构生物学系,CSIC,ES-28006; mrmoreno@iqfr.csic.es(MR-M.); xalbert@iqfr.csic.es (AA) * 通信地址:prodriguez@ibmcp.upv.es;电话:+34-963-877-860
∗生物学学院,美国新布拉斯·林·科恩大学,美国东北68588,美国; †美国纽约州14627的Roc Hest Er的Bio Logy的Dep Artity,Roc Hest Er的Uni Versity; ‡美国纽约州伊萨卡市的生物学杂志和环境的生物学艺术; §美国加利福尼亚州Inst I t te t te t te t te t t te t te t te t t te t te t te t t t t te a saden a,美国加利福尼亚州91125,美国; ¶海洋生物学ICA L Labo Rato Ry,Wo O DS Hole,MA 02543-1050,美国; || Bio Logy,Uni Versi ty o f o ttawa,o ttawa ont art ar io k1n 6n5,加拿大; #普林斯顿神经科学Insti Insti Tu t e,Univer on Princet,Princet on,NJ 08544,美国; ∗ *生物学Dep Art Ment,Bowdoin College,Brunswick,ME 04011,美国; ††WY AMIN G,LA RA MIE,WY MIE,WY 82070,WY AMING UNISWERALIG和生理学艺术; ‡‡耶鲁大学,纽黑文,CT 06520-8109,耶鲁大学地球和行星科学; §§§人生科学学院,一家州立大学,美国坦佩,亚利桑那州85287-4501,美国; ¶¶BioLogy,Uni Versi ty of th carolin a,ch apel hi l l,NC 27599,美国; |||美国加利福尼亚州伯克·埃利(Berk Eley),美国加利福尼亚州94720的贝尔克·奥尼亚(CALIC ORNIA)的特里格拉(Tegra Tiv e B)美国宾夕法尼亚州公园,宾夕法尼亚州16803,宾夕法尼亚州立大学生物学的## Dep Art Ment; ** Heureka,芬兰科学中心,Vantaa 01300,芬兰; †††nat iona l生物学中心科学中心,tata Insti te t t t t t t t t t t t t in dia in rch,ba ngalore 560065,in dia; Bio log Ica l Sciences,GE Org ia t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t in a in a in lant a,ga 30332,美国
1生物学实验室,健康科学细胞Mexicali,Mexicali的牙科学院,墨西哥,不列颠哥伦比亚省Mexicali的Noma de baja noma de baja,墨西哥,墨西哥2学院。 of the Health Mexicali, Faculty of Nursing ´ a Mexicali, Auto ´ noma University of Baja California, Mexicali, BC, Mexico, 4 Institute of Research in Sciences Me ´ dicas, Department of Closicas, Divisius of Biome ´ Dicas, University Center of Los Altos Mexico, 5 Microbiology Laboratory, Faculty of Medicine, Auto ´ noma University of巴哈加利福尼亚,蒂华纳,卑诗省,墨西哥
预期使用Gen III Microplate™测试面板使用94种生化测试提供了标准化的微方法,以剖面并识别革兰氏阴性和革兰氏阴性细菌的广泛范围。生物学的微生物识别系统软件(例如Omnilog®数据收集)用于从Gen III微板岩中的表型模式中鉴定细菌。描述生物Gen III微镀酸盐分析了94个表型测试中的微生物:71个碳源利用分析(图1,列1-9)和23种化学敏感性测定(图1,列,10-12列)。测试面板提供了微生物的“表型指纹”,可用于在物种水平上识别它。所有必要的营养物质和生化物都被预填充并干燥成96孔的微板井。四唑氧化还原染料用于比色表示碳源的利用或对抑制性化学物质的抗性。进行测试非常简单,如图2所示。要鉴定的分离物在琼脂培养基上生长,然后在推荐的细胞密度下悬浮在特殊的“胶凝”接种液3(IF)中。然后将细胞悬浮液接种到Gen III微板酸盐中,每孔100 µL,然后将微孔板孵育以使表型指纹形成。接种时,所有井都无色。在孵育过程中,在细胞可以利用碳源和/或生长的井中呼吸增加。增加的呼吸导致四唑氧化还原染料的减少,形成紫色。图1。负井仍然无色,负面对照井(A-1)也没有碳源。也有一个阳性对照井(A-10)用作10-12列中化学敏感性测定的参考。孵化后,将紫色井的表型指纹与生物学广泛的物种文库进行了比较。如果发现匹配,则将进行分离物的物种水平识别。在微板元素III微板TM
瑞典乌普萨拉学会,纳比亚大学纳米比亚大学4个学院4学院,7058),墨西哥,墨西哥大学汽车大学,11个iLlow椅子。爱沙尼亚大学14号的爱沙尼亚,爱沙尼亚塔尔图17号
i。关于合成生物学与生物多样性之间关系的观点。 div>在会议上产生的信息是墨西哥在合成生物学和生物技术方面最大的机会领域,这是通过现代技术的使用和开发来研究和使用我们的生物多样性。 div>墨西哥的合成生物学必须基于国家生物多样性的可持续使用和保护。 div>合成生物学的最终产物主要是以下三个:1)通过化学合成之前获得BS之前获得的商业活性物质或原理,或者是从植物提取物(例如植物提取物或微生物的种植)中分离出来的。 div>现在,通过合成生物学获得了这些相同的产品,通常包括与合成遗传回路的修改微生物的限制使用。 div>所得产品的使用和商业化已经受到与政府和卫生部门相关的COFEPRI或其他监管实例的调节。 div>微生物在培养和消毒时,并不代表生物多样性的风险。 div>2)当产品本身是具有合成生物学的改良生物时,其目的是将其释放到环境中,这可能是由于植物所需的植物,例如植物和微藻。 div>用BS原理建立生物体时,您可以设计这些生物体以最大程度地降低遗传当前改性生物的风险。 div>这可以通过以顺式贡元的方式进行修饰(与生物体的相同基因的工程而无需插入外源遗传物质),或者与其自然来源相比,插入的基因或序列可以修改并与接收体的遗传序列相比。 div>尽管环境风险必须低于目前的修改生物,但建议通过考虑BS修饰的身体是否是例如本地物种来分析其调节。 div>这些生物可以通过常规的基因工程过程获得3)完全从整个基因组中重新设计的生物。 div>这种情况被期望为将来会发生的事情,最初仅将其包括在科学目的的单细胞生物中,并在受限的环境中培养。 div>在这种情况下,建议研究人员和机构宣布其项目和产品的开放性和透明度。 div>风险委员会可能正在监视这些类型的项目以分析