AFM 急性弛缓性脊髓炎 AFP 急性弛缓性麻痹 AFR 非洲区域 AFRO 非洲区域办事处 AMR 美洲区域 API 应用程序编程接口 bOPV 双价口服脊髓灰质炎病毒疫苗 CBS 社区监测 CDC 美国疾病控制与预防中心 CIF 病例调查表 COP 实践社区 cVDPV 循环疫苗衍生脊髓灰质炎病毒 cVDPV1 循环疫苗衍生 1 型脊髓灰质炎病毒 cVDPV2 循环疫苗衍生 2 型脊髓灰质炎病毒 cVDPV3 循环疫苗衍生 3 型脊髓灰质炎病毒 DD 直接检测 DD-ITD 带型内分化的直接检测 DDNS 通过纳米孔测序直接检测 EBS 基于事件的监测 EMR 东地中海区域 EMRO 东地中海区域办事处 EPI 扩大免疫规划 EQA 外部质量评估 ES 环境监测 eSurv 电子监测 eTools 电子工具 EUR 欧洲区域 EURO 欧洲区域办事处 EV 肠道病毒 EVS肠道病毒监测 FRR 财政资源需求 GCC 全球根除脊髓灰质炎认证委员会 GPEI 全球根除脊髓灰质炎行动 GPLN 全球脊髓灰质炎实验室网络 GPLNMS 全球脊髓灰质炎实验室网络管理系统 GPSAP 全球脊髓灰质炎监测行动计划 GSL 全球专业实验室 HR 人力资源 HSB 就医行为 HQ 总部 IHR 国际卫生条例 IPV 灭活脊髓灰质炎病毒疫苗 ISS 综合支持性监管 ITD 种内区分 IVB 免疫、疫苗和生物制品 iVDPV 免疫缺陷相关疫苗衍生脊髓灰质炎病毒 KPI 关键绩效指标
参考文献:1. 存档数据,Grifols。2. Hughes RAC、Donofrio P、Bril V 等;代表 ICE 研究组。静脉注射免疫球蛋白(10% 辛酸盐色谱纯化)治疗慢性炎症性脱髓鞘性多发性神经根神经病(ICE 研究):一项随机安慰剂对照试验。Lancet Neurol。2008;7(2):136-144。3. GAMUNEX®-C(免疫球蛋白注射剂 [人],10% 辛酸盐/色谱纯化)处方信息。Grifols。4. FDA 批准免疫球蛋白产品用于 CIDP。Neurology Today。2008;8(19):1-35。5. Lebing W、Remington KM、Schreiner C、Paul HI。通过辛酸盐灭活病毒和柱层析产生的新型静脉免疫球蛋白(IGIV-C,10%)的特性。Vox Sang。2003;84(3):193-201。6. Alonso W、Vandeberg P、Lang J 等人。免疫球蛋白皮下注射,人 20% 溶液。生物制品。2020;64:34-40。7. Schwab I、Nimmerjahn F。静脉免疫球蛋白疗法:IgG 如何调节免疫系统?Nat Rev Immunol。2013;13(3):176-189。8. Bertolini J。用于治疗用途的血浆蛋白的纯化。引自:Simon TL、McCullough J、Snyder EL、Solheim BG、Strauss RG 编辑。 Rossi 输血医学原理,第 5 版。John Wiley & Sons;2016:302-320。9. Latov N、Deng C、Dalakas MC 等。慢性炎症性脱髓鞘性多发性神经根神经病对静脉注射免疫球蛋白的临床反应时间和过程。Arch Neurol。2010;67(7):802-807。
参考:1。文件中的数据,grifols。2。Hughes Rac,Donofrio P,Bril V等;代表ICE研究小组。 静脉内免疫球蛋白(10%二烯酸酯 - 色谱法纯化)用于治疗慢性炎症性脱髓鞘性多甲状腺纤维肌疾病(ICE研究):一项随机的安慰剂对照试验。 柳叶刀神经。 2008; 7(2):136-144。 3。 gamunex®-C(免疫球蛋白注射[人],10%caprylate/permotograggrice纯化)处方信息。 grifols。 4。 FDA批准用于CIDP的免疫球蛋白产物。 今天的神经病学。 2008; 8(19):1-35。 5。 Lebing W,Remington KM,Schreiner C,Paul HI。 通过磷酸酯和柱色谱法失活产生的新型静脉免疫球蛋白(IGIV-C,10%)的特性。 Vox Sang。 2003; 84(3):193-201。 6。 Alonso W,Vandeberg P,Lang J等。 免疫球蛋白皮下,人类20%溶液。 生物学。 2020; 64:34-40。 7。 schwab I,Nimmerjahn F.静脉免疫球蛋白治疗:IgG如何调节免疫系统? nat Rev Immunol。 2013; 13(3):176-189。 8。 Bertolini J. 血浆蛋白的纯化用于治疗用途。 in:Simon TL,McCullough J,Snyder EL,Solheim BG,Strauss RG编辑。 罗西的输血原则,第五版。 John Wiley&Sons; 2016:302-320。 9。 Latov N,Deng C,Dalakas MC等。 Arch Neurol。Hughes Rac,Donofrio P,Bril V等;代表ICE研究小组。静脉内免疫球蛋白(10%二烯酸酯 - 色谱法纯化)用于治疗慢性炎症性脱髓鞘性多甲状腺纤维肌疾病(ICE研究):一项随机的安慰剂对照试验。柳叶刀神经。2008; 7(2):136-144。 3。 gamunex®-C(免疫球蛋白注射[人],10%caprylate/permotograggrice纯化)处方信息。 grifols。 4。 FDA批准用于CIDP的免疫球蛋白产物。 今天的神经病学。 2008; 8(19):1-35。 5。 Lebing W,Remington KM,Schreiner C,Paul HI。 通过磷酸酯和柱色谱法失活产生的新型静脉免疫球蛋白(IGIV-C,10%)的特性。 Vox Sang。 2003; 84(3):193-201。 6。 Alonso W,Vandeberg P,Lang J等。 免疫球蛋白皮下,人类20%溶液。 生物学。 2020; 64:34-40。 7。 schwab I,Nimmerjahn F.静脉免疫球蛋白治疗:IgG如何调节免疫系统? nat Rev Immunol。 2013; 13(3):176-189。 8。 Bertolini J. 血浆蛋白的纯化用于治疗用途。 in:Simon TL,McCullough J,Snyder EL,Solheim BG,Strauss RG编辑。 罗西的输血原则,第五版。 John Wiley&Sons; 2016:302-320。 9。 Latov N,Deng C,Dalakas MC等。 Arch Neurol。2008; 7(2):136-144。3。gamunex®-C(免疫球蛋白注射[人],10%caprylate/permotograggrice纯化)处方信息。grifols。4。FDA批准用于CIDP的免疫球蛋白产物。今天的神经病学。 2008; 8(19):1-35。 5。 Lebing W,Remington KM,Schreiner C,Paul HI。 通过磷酸酯和柱色谱法失活产生的新型静脉免疫球蛋白(IGIV-C,10%)的特性。 Vox Sang。 2003; 84(3):193-201。 6。 Alonso W,Vandeberg P,Lang J等。 免疫球蛋白皮下,人类20%溶液。 生物学。 2020; 64:34-40。 7。 schwab I,Nimmerjahn F.静脉免疫球蛋白治疗:IgG如何调节免疫系统? nat Rev Immunol。 2013; 13(3):176-189。 8。 Bertolini J. 血浆蛋白的纯化用于治疗用途。 in:Simon TL,McCullough J,Snyder EL,Solheim BG,Strauss RG编辑。 罗西的输血原则,第五版。 John Wiley&Sons; 2016:302-320。 9。 Latov N,Deng C,Dalakas MC等。 Arch Neurol。今天的神经病学。2008; 8(19):1-35。 5。 Lebing W,Remington KM,Schreiner C,Paul HI。 通过磷酸酯和柱色谱法失活产生的新型静脉免疫球蛋白(IGIV-C,10%)的特性。 Vox Sang。 2003; 84(3):193-201。 6。 Alonso W,Vandeberg P,Lang J等。 免疫球蛋白皮下,人类20%溶液。 生物学。 2020; 64:34-40。 7。 schwab I,Nimmerjahn F.静脉免疫球蛋白治疗:IgG如何调节免疫系统? nat Rev Immunol。 2013; 13(3):176-189。 8。 Bertolini J. 血浆蛋白的纯化用于治疗用途。 in:Simon TL,McCullough J,Snyder EL,Solheim BG,Strauss RG编辑。 罗西的输血原则,第五版。 John Wiley&Sons; 2016:302-320。 9。 Latov N,Deng C,Dalakas MC等。 Arch Neurol。2008; 8(19):1-35。5。Lebing W,Remington KM,Schreiner C,Paul HI。 通过磷酸酯和柱色谱法失活产生的新型静脉免疫球蛋白(IGIV-C,10%)的特性。 Vox Sang。 2003; 84(3):193-201。 6。 Alonso W,Vandeberg P,Lang J等。 免疫球蛋白皮下,人类20%溶液。 生物学。 2020; 64:34-40。 7。 schwab I,Nimmerjahn F.静脉免疫球蛋白治疗:IgG如何调节免疫系统? nat Rev Immunol。 2013; 13(3):176-189。 8。 Bertolini J. 血浆蛋白的纯化用于治疗用途。 in:Simon TL,McCullough J,Snyder EL,Solheim BG,Strauss RG编辑。 罗西的输血原则,第五版。 John Wiley&Sons; 2016:302-320。 9。 Latov N,Deng C,Dalakas MC等。 Arch Neurol。Lebing W,Remington KM,Schreiner C,Paul HI。通过磷酸酯和柱色谱法失活产生的新型静脉免疫球蛋白(IGIV-C,10%)的特性。Vox Sang。 2003; 84(3):193-201。 6。 Alonso W,Vandeberg P,Lang J等。 免疫球蛋白皮下,人类20%溶液。 生物学。 2020; 64:34-40。 7。 schwab I,Nimmerjahn F.静脉免疫球蛋白治疗:IgG如何调节免疫系统? nat Rev Immunol。 2013; 13(3):176-189。 8。 Bertolini J. 血浆蛋白的纯化用于治疗用途。 in:Simon TL,McCullough J,Snyder EL,Solheim BG,Strauss RG编辑。 罗西的输血原则,第五版。 John Wiley&Sons; 2016:302-320。 9。 Latov N,Deng C,Dalakas MC等。 Arch Neurol。Vox Sang。2003; 84(3):193-201。 6。 Alonso W,Vandeberg P,Lang J等。 免疫球蛋白皮下,人类20%溶液。 生物学。 2020; 64:34-40。 7。 schwab I,Nimmerjahn F.静脉免疫球蛋白治疗:IgG如何调节免疫系统? nat Rev Immunol。 2013; 13(3):176-189。 8。 Bertolini J. 血浆蛋白的纯化用于治疗用途。 in:Simon TL,McCullough J,Snyder EL,Solheim BG,Strauss RG编辑。 罗西的输血原则,第五版。 John Wiley&Sons; 2016:302-320。 9。 Latov N,Deng C,Dalakas MC等。 Arch Neurol。2003; 84(3):193-201。6。Alonso W,Vandeberg P,Lang J等。免疫球蛋白皮下,人类20%溶液。生物学。2020; 64:34-40。7。schwab I,Nimmerjahn F.静脉免疫球蛋白治疗:IgG如何调节免疫系统?nat Rev Immunol。2013; 13(3):176-189。8。Bertolini J.血浆蛋白的纯化用于治疗用途。in:Simon TL,McCullough J,Snyder EL,Solheim BG,Strauss RG编辑。罗西的输血原则,第五版。John Wiley&Sons; 2016:302-320。 9。 Latov N,Deng C,Dalakas MC等。 Arch Neurol。John Wiley&Sons; 2016:302-320。9。Latov N,Deng C,Dalakas MC等。 Arch Neurol。Latov N,Deng C,Dalakas MC等。Arch Neurol。慢性炎症性脱髓鞘性多甲状腺病变中静脉免疫球蛋白对静脉免疫球蛋白的临床反应和临床反应的过程。2010; 67(7):802-807。
脑膜炎奈瑟菌是全球败血症和脑膜炎的主要原因,可导致大量死亡以及幸存者严重的长期后遗症 (1)。六种脑膜炎球菌荚膜群 (A、B、C、W、X 和 Y) 以其多糖荚膜为特征,可导致几乎所有人类侵袭性感染。流行病学因血清群和克隆复合体组合而异。脑膜炎球菌通常定植于鼻咽部,携带率在儿童期增加,在 18 至 20 岁达到峰值,随后下降 (2,3)。携带期可能持续数月 (4)。侵袭性疾病是感染的罕见结果,但从病例到密切接触者的进一步传播很少会导致继发病例和聚集性感染 (5、6、7)。然而,不到 2% 的侵袭性脑膜炎球菌病 (IMD) 病例被认为是与原发性 IMD 病例密切接触所致 ( 8 )。2014 年,在引入常规 MenB 婴儿和 MenACWY 青少年疫苗接种之前,英国所有年龄组的年 IMD 发病率约为每 100,000 人 1.2 人 ( 9 )。以血清杀菌抗体衡量的全身免疫力通常在感染脑膜炎球菌后 14 天内形成 ( 10 )。罕见的是,感染可能会在免疫力形成之前发展为侵袭性疾病。根据实验室获得性感染研究 ( 11 )、已知接触日期的偶尔聚集性感染 ( 12 ) 以及军队新兵携带研究 ( 13 ) 的数据,该潜伏期通常为 3 至 5 天。已确诊的脑膜炎球菌携带者通常不会患上侵袭性疾病 ( 13 )。感染后罹患侵袭性疾病的风险可能因环境和宿主因素而异,但也主要取决于所感染菌株的特性。仅有极小部分携带菌株会导致侵袭性疾病 ( 14 )。针对 C 组脑膜炎球菌 (MenC) 的结合疫苗自 20 世纪 90 年代末开始面世,针对 A、C、W 和 Y 组脑膜炎球菌 (MenACWY) 的四价结合疫苗已在欧洲获得许可近 20 年。2013 年初,一种专门为预防 B 组脑膜炎球菌 (MenB) 引起的疾病而开发的新疫苗在欧洲获得许可(4CMenB,Bexsero®,GSK Biologicals,比利时)。该疫苗不同于之前存在的 MenC 和 MenACWY 结合疫苗,因为它是基于蛋白质的,因此与结合疫苗相比具有不同的作用机制,并且在不同年龄组中具有不同的安全性、反应原性和免疫原性特征 ( 15 )。2017 年,另一种使用二价脂质化 fHbp (rLP2086,Trumenba®;辉瑞) 的 MenB 疫苗在欧洲获得许可。rLP2086 (Trumenba®) 目前获准用于 10 岁及以上的个人。本指导原则包括 MenB 疫苗在 IMD 病例和接触者公共卫生管理中的潜在用途。
世卫组织。1. Jing Q, Wang M. Glob Health J . 2019;3:37–45;2. 世卫组织。疾病暴发新闻。登革热 - 全球形势。2023 年。网址:https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON498(2024 年 3 月访问);3. Schaefer TJ 等人。登革热。2019 年。网址:https://www.ncbi.nlm.nih.gov/books/NBK430732/(2024 年 5 月访问)4. 世卫组织。登革热和重症登革热。2024 年。网址:https://www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue(2024 年 3 月访问); 5. Messina JP 等人。自然微生物学。2019;4:1508-15;6. Ebi KL 等人。环境研究。2016;151:115-23;7. 世卫组织。世卫组织免疫、疫苗和生物制品司司长致辞。2024 年。网址:https://www.who.int/news/item/31-01-2024-message-by-the-director-of-the-department-of-immunization--vaccines-and-biologicals-at-who---january-2024(2024 年 4 月访问);8. Khan MB 等人。传染病公共卫生杂志。2023;16:1625-42;9. GBD 2017 年死因合作者。 Lancet。2018;392:1736-88;10. Wilder-Smith A. Curr Infect Dis Rep. 2018;20:50;11. CDC。旅行相关传染病。在:登革热,2024 年。https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-related-fective-diseases/dengue(2024 年 4 月访问);12. Schulte A 等人。Emerg Infect Dis。2020;26:751-5;13. Zeng W 等人。Am J Trop Med Hyg。2018;99:1458-65;14. Tiga-Loza DC 等人。Trans R Soc Trop Med Hyg。2020;114:355-64; 15. 梁雪莉,等。 PLoS Negl Trop Dis。 2023;17:e0010631; 16. Bulugahapitiya U 等人。欧洲实习医学杂志。 2007;18:185–92。
菲律宾共和国农业部秘书办公室奎松市迪利曼椭圆路 1993 年 10 月 12 日畜牧业行政命令第 27 号 1993 系列主题:确定/评估兽药对目标动物的功效和安全性的最低要求根据 RA 第 3720 号(经第 175 号行政命令修订,也称为“食品、药品、设备和化妆品法”)RA 3675(也称为 1988 年“仿制药法”)、RA 382(称为“药房法”)、RA 6425(称为“1972 年危险药物法”)(经修订)RA 1556(也称为“牲畜和家禽饲料法”)、RA 1071(兽医生物制品和药物制剂销售管理法案和 RA 3101 法案,该法案授权畜牧业局局长在农业和自然资源部长批准下颁布用于治疗家畜的病毒、血清、毒素或类似产品的制备、销售、贸易、装运和进口法规,以及农业部和卫生部于 1991 年 9 月 20 日签署的《协议备忘录》,该备忘录规定了双方在对从事兽药、预混料和产品的制造、分销和销售机构进行许可方面的职能,同样还包括对兽药和产品(例如兽用生物制品、预混料药物、水溶性药物、补充剂和动物饲料)进行注册,为供所有相关方参考、指导和遵守,现颁布以下内容,以确定用于治疗食用动物的药物的功效和目标动物安全性的最低要求。这些要求的目的是确定哪些药物对发展中国家有益,并防止使用不安全或无效的药物。A. 在发达国家有令人满意的使用历史的药物如果一种药物或药物组合已在发达国家得到评估和批准,并且该药物有令人满意的使用历史,则以下测试要求将适用于各种使用条件:
宫颈癌是女性发病率最高的恶性肿瘤之一,据世界卫生组织(WHO)统计,全球每年新增宫颈癌病例57万,死亡31.3万(1)。19世纪80年代,德国科学家Zur等发现人乳头瘤病毒(HPV)感染与宫颈癌有关(2)。预防性HPV疫苗在降低HPV感染率方面发挥着重要作用,是预防HPV相关疾病特别是宫颈癌的革命性一步。自2006年以来,预防性HPV疫苗已在100多个国家获得许可(3)。目前有三种类型(表1):Cervarix(葛兰素史克生物制品公司,比利时)、Gardasil(默克公司,美国)和Gardasil9(默克公司,美国)(4)。 Cervarix 是一种二价 HPV (2vHPV) 疫苗,含有两种病毒样颗粒 (VLP),包括 HPV 16 和 18 VLP,70% 的宫颈恶性肿瘤由此引发 ( 5 )。Gardasil 是一种四价 HPV (4vHPV) 疫苗,含有 HPV 16 和 18 VLP 以及 6 型和 11 型 VLP,与 90% 的生殖器疣感染有关 ( 6 )。Gardasil 9 是一种九价 HPV (9vHPV) 疫苗,适用于 HPV 6/11/16/18/31/33/45/52/58。2007 年,4vHPV 和 2vHPV 获得许可(图 1)。2014 年,9vHPV 获得许可 ( 7 )。目前已确定接种疫苗可降低女性和男性生殖道疾病的发病率,包括肛门和口腔HPV感染以及宫颈、阴道、外阴、阴茎和肛门上皮内瘤变(4)。自获得许可以来,全球范围内HPV感染率和发病率已大幅下降。预防性HPV疫苗的安全性、有效性和持续时间已得到WHO的确认,这使得通过接种疫苗控制人类HPV相关宫颈癌的发生成为可能。本文综述了3种HPV疫苗的最新进展以及有前景的疫苗,为HPV疫苗的进一步应用提供理论基础。HPV是一种嗜上皮病毒,属于乳头瘤病毒科,具有多种动物和人类宿主(8)。根据HPV引起病变的能力,HPV可分为
赛诺菲巴斯德 91,880,415 葛兰素史克(GSK) 73,345,617 霍夫曼-罗氏公司 65,355,758 Seqirus 33,396,110 诺华 15,292,743 Medimmune 11,556,151 Kaketsuken(KM Biologics) 6,614,476 大阪大学微生物疾病研究基金会(BIKEN) 6,459,328 Denka Seiken Co. Ltd. 4,631,388 北里第一三共疫苗有限公司(Daiichi Sankyo Vaccine CO.Ltd.) 3,981,715 GC Pharma(前绿十字公司) 3,378,414 CSL Limted 2,667,745布塔坦研究所 2,730,303 科兴生物制品有限公司 1,453,267 上海生物制品研究所有限公司 1,082,381 华兰生物疫苗股份有限公司 817,303 SK Bioscience 734,305 Fluart Innovative Vaccines LTD 667,785 Adimmune Corporation 625,949 Becton Dickinson and Company (BD) 341,432 病毒、疫苗和血清研究所 Torlak 294,582 北京天坛生物制品股份有限公司 235,234 百特国际公司 209,238 长春生物制品研究所有限公司 CNBG 402,046 圣彼得堡疫苗和血清科学研究所 168,888 DiaSorin Molecular LLC 155,658 Omninvest Vaccine Manufacturing, Researching & Trading Ltd. 149,518 Alere Inc. 117,159 Takeda Pharmaceuticals Internatioanl GmbH 115,025 Focus Diagnostics, Inc. 83,844 CNBG-武汉生物制品研究所有限公司52,678 北京生物研究所生物制品有限公司(BBIBP) 49,798 Qiagen 61,512 印度血清研究所有限公司 48,335 政府制药组织(GPO) 25,059 印度疫苗和医学生物制品研究所(IVAC) 23,303 Quidel Corporation 23,303 中国生物技术集团 20,000 Princeton Biomeditech Corporation 23,303 卡迪拉医疗保健有限公司(研发中心) 82,793 Response Biomedical Corporation 16,762 Cepheid 25,059 Indevr, Inc. 15,389 Fast Track Diagnostics 13,045 Vabiotech 15,230 NPO Petrovax Pharm 10,246 Medicago Inc. 7,439 Nanotherapeutics 5,337 Nanosphere Inc. 4,984 PT Bio Farma (Persero) 4,984 Protein Sciences Corporation 4,984 UMN Pharma Inc. 2,799 兰州生物制品研究所 2,173
Geert Vanden Bossche,博士Geert Vanden Bossche,PhD,DVM是疫苗研究专家。他有一系列与疫苗发现和临床前研究合作的公司和组织,包括GSK,Novartis,Solvay Biologicals和Bill&Melinda Gates Foundation。Vanden Bossche博士还协调了Gavi(全球疫苗和免疫联盟)的埃博拉疫苗计划。他在病毒学和微生物学上获得了董事会认证,是30多个出版物的作者,也是通用疫苗专利申请的发明者。目前担任独立疫苗研究顾问。2021年3月6日“只能想到很少有其他策略来将相同的无害病毒变成大规模杀伤性生物武器,以达到相同的效率。”我们冒着创建全球“不可控制的怪物”的风险,博士认为,疫苗学家,临床医生和科学家只专注于个人一级的短期成果,而不是全球人口一级的后果,他认为这很快就会变得很明显。以“将相当无害的病毒变成了一个无法控制的怪物”的形式。他的关注在于“免疫逃生”。对于那些需要快速介绍该主题的人,请阅读Jemma Moran的文章突变变化和锁定的危险。博客以电子邮件加入7689其他订户信息,而无需审查。一封电子邮件,大多数日子。无垃圾邮件。对于那些需要全面概述我们免疫学概述的人,请观看Ivor Cummins采访Creon Levit,EP81我们病毒问题的惊人免疫学 - 工作中令人难以置信的科学!许多医生也将受益于观看这一点(注意:普通医师接受免疫学和病毒学方面的培训极少)。那些希望深入研究免疫学的人,例如,罗伊特的基本免疫学,第13版。Bossche指出,多个新兴的“更具感染性”的病毒式变体已经是“免疫逃避”我们“先天免疫”的例子,并且是政府干预本身最能创造的。所谓的非药理学干预措施(NPI) - 即锁定和布面覆盖物。非正式,但也更恰当地称为非科学干预措施。他认为:正在进行的大规模疫苗接种部署“非常有可能进一步增强'适应性'免疫逃生,因为目前的疫苗都不会阻止病毒变异的复制/传播”。和“随着感染性的增加,对疫苗的病毒抗性可能性增加”。他声称自己的信念是学生的第一个疫苗学课中教授的基本原则 - “一个人不应在暴露于高感染压力的种群中使用预防性疫苗(现在肯定是因为目前流传着多种高度感染性变体的情况”)。他说,要“完全逃脱”,即高度可变的病毒,“只需要在其受体结合域中添加另一个突变”。我们的“先天”免疫将丢失(一种丰富的,多种特异性的自然免疫形式。所有时人们由于干预了他真正的忧虑而失去自然的“先天”免疫力,或者当他所说的“不担心”时,由于人类可能会严重损害其自然的“先天”免疫力,因为在这个关键关头在疫苗接种计划中进行了大规模部署。
卡内基·梅隆大学(Carnegie Mellon University)使用生物材料和相关设备来教学和研究。Individuals that participate in the biological safety program (BSP) use biological material for the following purposes: theoretical analysis, exploration, and experimentation, extension of investigative findings and theories of a scientific or technical nature into practical application for experimental and/or demonstration purposes, including but not limited to the experimental production, and testing of models, devices, equipment and processes, and demonstration, teaching and instruction in courses offered by the大学毕业和本科生。本计划涵盖的生物材料或相关设备将不用于内部管理或对人类的外部应用。适用于本计划的生物材料是:所有感染性生物(细菌,真菌,寄生虫,prions,人力车,病毒等)that can cause disease in humans, or cause significant environmental or agricultural impact, human or primate tissues, fluids, cells or cell culture, recombinant or synthetic nucleic acids, transgenic plants or animals, plasmids, toxins (bacterial, fungal, plant, etc.),过敏原和感染的动物及其各自的组织。大学致力于提供安全健康的学习,教学和研究环境。该生物安全计划为使用和操纵生物学和相关设备提供了整个大学安全指南,政策和程序。因此,通过评估风险来执行安全的实践计划。大学生物安全计划的目标是:保护员工和学生免于接触传染性药物,防止环境污染,遵守联邦,州和地方法规。大学的BSP考虑到“安全”和“安全”一词是理想的概念,尽管理想的是,但绝对是无法实现的。生物印刷,基因工程,细胞融合,固定细胞和酶的最新进展等。为应用微生物学提供了一个新的维度。技术的发展迅速,以至于大学的安全专家不可能预期每种使用潜在的危险生物学或化学系统的使用,并有效地监视涉及这些材料的每项操作。大学BSP的成功要求研究人员具有足够的知识来识别和确定与工作相关的潜在危害,并与生物安全官员(BSO)合作,以开发和建立程序,实践,设备和设施,以控制已确定的风险或减少其可接受的水平,并以可接受的水平和以安全的方式进行活动
