能源生产沙漠中晴朗的天空和高水平的太阳能是发电的理想选择。摩洛哥的NOOR太阳能电厂是世界上最大的浓缩太阳能(CSP)开采大型石油和天然气储量。例如,沙特阿拉伯拥有第二大石油储备,卡塔尔拥有第三大已验证的天然气储量。两个国家都位于阿拉伯沙漠中。可以转移定居水供应,以使城市在沙漠中生长。例如,埃及的Sharm El Sheikh以其水上运动和水肺潜水而闻名。但是,由于该地区缺乏淡水,两家政府拥有的淡化公司正在运营,需要大量的能量使用。该地区依靠旅游业,因此需要游泳池和酒店的水。该市计划在2045年根据联合国栖息地计划获得无污染的计划。旅游业许多沙漠国家现在正在利用景观来产生游客的收入。活动包括骆驼游乐设施,沙丘越野车和砂板。尽管位于沙漠中,但阿拉伯联合酋长国的迪拜市仍有许多景点。其中包括一个水族馆,一个室内滑雪坡和一个水上乐园。
摘要:神经递质 (NT) 是人类大脑正常运作所必需的化学信使,在人体生理系统中具有特定的浓度。其浓度的任何波动都可能导致多种神经元疾病和障碍。因此,对快速有效的诊断以调节和管理人类大脑疾病或状况的需求正在迅速增加。NT 可以从天然产物中提取。研究人员已经开发出新的协议来提高传感器的传感能力和环保性。深共晶溶剂 (DES) 已成为可持续化学中广受欢迎的“绿色溶剂”。DES 提供了更大的电位窗口范围,有助于增强传感器的电催化性能,并且具有更高的惰性,有助于电极的腐蚀保护,最终为系统提供更好的灵敏度和耐用性。此外,DES 可在工作电极上轻松电沉积不同的材料,这是电催化传感器的主要先决条件。本文首次详细描述了 DES 作为绿色溶剂在检测和提取 NT 中的应用。我们涵盖了截至 2022 年 12 月有关 NT 提取和监测的在线文章。最后,我们总结了该主题并展望了该领域的未来。
General, Biological and Biomedical Statistics By Waleed Al-Murrani Edited by Richard Handy This book published 2024 (self published by the author 2021) Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2024 by Waleed al-Murrani本书中包含的材料是真诚的,以供一般使用和应用,并且由于在本书中包含的特定情况下,由于依靠特定情况而产生的任何损失或费用都不承担任何责任。保留本书的所有权利。未经版权所有者事先许可,以任何形式或以任何形式或以任何形式(任何形式),以任何形式或以任何形式的方式,以任何形式或以任何形式)复制了本书的一部分,以任何形式或以任何形式或以任何方式传输。ISBN:978-1-0364-1114-5 ISBN(电子书):978-1-0364-1115-2ISBN:978-1-0364-1114-5 ISBN(电子书):978-1-0364-1115-2
○ 找工作 ○ 找主机 ○ 找资金 ○ 研究人员章程和守则 ○ 研究人员人力资源战略 ○ 养老金和 RESAVER ○ Science4refugees 计划
糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
摘要 - 专门的深度学习(DL)加速器和神经形态处理器的出现为将深度和尖峰神经网络(SNN)算法应用于医疗保健和生物医学应用的新企业带来了新的机会。这可以促进医学互联网系统(IoT)系统和护理点(POC)设备的进步。在本文中,我们提供了一个教程,描述了如何使用各种技术,包括新兴的回忆设备,可编程的门阵列(FPGA)和互补的金属氧化物半导体(CMOS),可用于开发有效的DL加速器,以解决各种诊断诊断,模式识别的诊断,信号过程和信号过程中的各种问题。此外,我们探讨了尖峰神经形态处理器如何补充其DL对应物以处理生物医学信号。该教程通过应用于医疗保健领域的大量神经网络和神经形态硬件的大量文献进行了研究。我们通过执行将传感器融合信号处理任务与计算机视觉相结合的传感器融合信号处理任务来标记各种硬件平台。在推理潜伏期和能量方面进行了专用神经形态处理器和嵌入AI加速器的比较。最后,我们对领域的分析进行了分析,并分享了各种加速器和神经形态处理器引入医疗保健和生物医学领域的优势,缺点,挑战和机遇的观点。
生物识别是指个人独特的身体和行为特征,例如指纹、面部特征、声音或打字模式。生物识别在用于安全和安保目的的人工智能应用中尤为重要,因为它们提供了一种可靠且方便的识别和验证个人的方法。人工智能技术具有快速处理和分析生物特征数据的强大能力。
序言,任何高等教育学院都有一个目标,可以使他们的学生为整个社会服务。DPSR大学为学生的最大利益设想其所有课程和课程。持续的努力为其所有研究生课程提供了新的愿景。B.Sc的新建议课程的课程课程生物医学科学为学生提供了一项全面的技能和知识,以观察学生的就业能力。本提议的课程的教学大纲将利用信用系统的优势,从而逐步从与生物医学科学本科课程的跨学科性质有关的简单概念过渡到复杂的概念。dpsru非常希望这一新课程的课程课程。生物医学科学将帮助学生做出有关他们希望在整个教育和生活中追求的目标的明智决定。介绍生物医学科学课程的介绍该课程将结构化,以加强学生在高中中学中获得的基本接触,并逐渐建立在这个知识基础上。该课程将包括前两个学期的核心课程,这些课程将介绍与生物学,细胞生物学,人类生理学和鸟类对器官系统功能的眼光有关的有机化学课程,以及在自然界中的重要性。在第二年,根据学期和第二学期的入门课程将进一步增强学生的知识基础。这也将向学生介绍自学资源。将重点放在对生物学化学的基本理解上,学生将了解蛋白质以及对生化功能的理解。在第二年结束时,学生将拥有细胞生物学,遗传学,生物有机化学,人类生理学,生物化学,药物化学,基本分子和免疫生物学的基础知识。与此一起,他们将接受医学实验室技术,流行病学数据分析,法医学科学和现代生物学的工具(SEC)(SEC)中使用的工具。药理学,药物化学,毒理学,病理学和生物物理学的概念对生物医学科学至关重要,并且在课程的最后一年中引入了这些概念。In the third year, the courses include more complex concepts of mechanisms of achieving regulated functioning of the biological systems, biophysical principles of biological systems, human genetics, genome organization, medical biotechnology and biochemistry and some of the recent excitement in biology and the application of bioinformatics in Biomedical sciences as part of Discipline specific elective (DSE) courses along with project work.最后一年中的一两篇论文将有较长的学习材料清单,这些材料将从不同的来源中获取;但是,阅读/教学材料的实际长度将保持最佳状态。
缺乏有关组织,器官和系统的性质的基本信息,从而阻碍了手术植入物材料的发展。材料的生活系统的特性在很大程度上是在组织力学的标题下进行的,往往比定量更具描述性。在现代手术植入物时代的早期,这种缺陷并不重要。然而,随着植入物继续改善,使用更长的使用寿命和更高的可靠性,无法预测植入的制造材料的行为已经表明,在健康或疾病中,相对缺乏对支持或宿主系统的材料特性的知识。在更传统的工程实践中,这种情况是不可接受的:航空和海洋应用的新设计的成功取决于对服务环境的详细,纪律和定量知识,包括将遇到和与之互动的材料的属性。因此,对海冰的无数物理特性的了解使破冰船的设计和开发无需反复试验。相比之下,新的外科植入物(结合新材料)的开发期可能超过十年,即使这样,只能做出短期绩效预测。是否可以构建制造材料和生物组织和流体的适当材料的足够数据库,以便可以在体内服务之前使用体外模拟来验证未来的植入物设计?虽然没有明显的智力障碍来实现这样的目标,但考虑到制造材料与生活系统之间可能相互作用的复杂性,它显然在遥远的将来。然而,大量数据积累了有关植入材料,天然组织和流体的材料方面的积累。不幸的是,这些数据广泛分布在多种形式的公开形式中,并从不同程度的准确性和精确度的实验观察中获得。这是一种与这种情况非常相似的情况
