缺乏有关组织,器官和系统的性质的基本信息,从而阻碍了手术植入物材料的发展。材料的生活系统的特性在很大程度上是在组织力学的标题下进行的,往往比定量更具描述性。在现代手术植入物时代的早期,这种缺陷并不重要。然而,随着植入物继续改善,使用更长的使用寿命和更高的可靠性,无法预测植入的制造材料的行为已经表明,在健康或疾病中,相对缺乏对支持或宿主系统的材料特性的知识。在更传统的工程实践中,这种情况是不可接受的:航空和海洋应用的新设计的成功取决于对服务环境的详细,纪律和定量知识,包括将遇到和与之互动的材料的属性。因此,对海冰的无数物理特性的了解使破冰船的设计和开发无需反复试验。相比之下,新的外科植入物(结合新材料)的开发期可能超过十年,即使这样,只能做出短期绩效预测。是否可以构建制造材料和生物组织和流体的适当材料的足够数据库,以便可以在体内服务之前使用体外模拟来验证未来的植入物设计?虽然没有明显的智力障碍来实现这样的目标,但考虑到制造材料与生活系统之间可能相互作用的复杂性,它显然在遥远的将来。然而,大量数据积累了有关植入材料,天然组织和流体的材料方面的积累。不幸的是,这些数据广泛分布在多种形式的公开形式中,并从不同程度的准确性和精确度的实验观察中获得。这是一种与这种情况非常相似的情况
4。Macneil S.用于皮肤组织工程的生物材料。今天。2008; 11:26-35。 5。 Ariento AR,Stoddart MJ,Alini M,Eglin D.关节软骨组织工程的生物材料:从生物学中学习。 Acta BioMater。 2018; 65:1-20。 6。 Torres ML,Oberti TG,FernándezJM。 HEMA和基于藻酸盐的软骨半融合水凝胶:合成和生物学表征。 J生物基科学多元杂志。 2020; 1-15。 https:// doi。 org/10.1080/09205063.2020.1849920 7。 Sultankulov B,Berillo D,Sultankulova K,Tokay TL,Saparov A. 在开发基于壳聚糖的生物材料的发展方面的进展。 生物分子。 2019; 9:470。 8。 JanouškováO。 用于软组织工程的合成聚合物支架。 Physiol Res。 2018; 67:S335-S348。 9。 otsu T,Matsumoto A,Shiraishi K,Amaya N,Koinuma Y. 取代基对二烷基烟酸与某些乙烯基单体的自由基共聚的影响。 J. Polym。 Sci。,A部分多部分。 化学。 1992; 30:1559-1565。 10。 al-Arbash ah,Elsagheer FA,Ali Aam,Elsabee MZ。 聚二烷基富马酸共聚物的玻璃转换温度。 J Polym Sci部分A:Polym Chem。 1999; 37:1839-1845。 11。 Fernandez JM,Molinuevo MS,Cortizo AM,McCarthy AD,Cortizo MS。 J Biomat Sci Poled。 12。2008; 11:26-35。5。Ariento AR,Stoddart MJ,Alini M,Eglin D.关节软骨组织工程的生物材料:从生物学中学习。Acta BioMater。2018; 65:1-20。6。Torres ML,Oberti TG,FernándezJM。HEMA和基于藻酸盐的软骨半融合水凝胶:合成和生物学表征。J生物基科学多元杂志。2020; 1-15。 https:// doi。org/10.1080/09205063.2020.1849920 7。Sultankulov B,Berillo D,Sultankulova K,Tokay TL,Saparov A.在开发基于壳聚糖的生物材料的发展方面的进展。生物分子。2019; 9:470。8。JanouškováO。 用于软组织工程的合成聚合物支架。 Physiol Res。 2018; 67:S335-S348。 9。 otsu T,Matsumoto A,Shiraishi K,Amaya N,Koinuma Y. 取代基对二烷基烟酸与某些乙烯基单体的自由基共聚的影响。 J. Polym。 Sci。,A部分多部分。 化学。 1992; 30:1559-1565。 10。 al-Arbash ah,Elsagheer FA,Ali Aam,Elsabee MZ。 聚二烷基富马酸共聚物的玻璃转换温度。 J Polym Sci部分A:Polym Chem。 1999; 37:1839-1845。 11。 Fernandez JM,Molinuevo MS,Cortizo AM,McCarthy AD,Cortizo MS。 J Biomat Sci Poled。 12。JanouškováO。用于软组织工程的合成聚合物支架。Physiol Res。2018; 67:S335-S348。9。otsu T,Matsumoto A,Shiraishi K,Amaya N,Koinuma Y.取代基对二烷基烟酸与某些乙烯基单体的自由基共聚的影响。J. Polym。 Sci。,A部分多部分。 化学。 1992; 30:1559-1565。 10。 al-Arbash ah,Elsagheer FA,Ali Aam,Elsabee MZ。 聚二烷基富马酸共聚物的玻璃转换温度。 J Polym Sci部分A:Polym Chem。 1999; 37:1839-1845。 11。 Fernandez JM,Molinuevo MS,Cortizo AM,McCarthy AD,Cortizo MS。 J Biomat Sci Poled。 12。J. Polym。Sci。,A部分多部分。化学。1992; 30:1559-1565。10。al-Arbash ah,Elsagheer FA,Ali Aam,Elsabee MZ。聚二烷基富马酸共聚物的玻璃转换温度。J Polym Sci部分A:Polym Chem。1999; 37:1839-1845。 11。 Fernandez JM,Molinuevo MS,Cortizo AM,McCarthy AD,Cortizo MS。 J Biomat Sci Poled。 12。1999; 37:1839-1845。11。Fernandez JM,Molinuevo MS,Cortizo AM,McCarthy AD,Cortizo MS。J Biomat Sci Poled。12。poly(ε-丙二酮)/多叶酸的表征作为骨组织工程的支架。2010; 21:1297-1312。Pasqualone M,Oberti TG,Andreetta HA,Cortizo MS。基于富马酸共聚物的膜,可俯瞰未来的透皮熟食设备:合成和性质。J Mater Sci Merted Med。2013; 24:1683-1692。13。Belluzo MS,Medina LF,Cortizo AM,Cortizo MS。基于生物医学应用多糖的聚电解质络合物的超声镇压。Ultrason Sonochem。2016; 30:1-8。14。Lastra ML,Molinuevo MS,Blaszczyk-Lezak I,Mijangos C,Cortizo MS。纳米结构的富马酸共聚物 - 壳聚糖交联支架:一项体外骨软骨发生再生研究。J Biomed Mater res a。2018; 106:570-579。15。kurita K.壳蛋白和壳聚糖:海洋甲壳类动物的功能性生物聚合物。Mar Biotechnol。2006; 8:203-226。 16。 rinaudo M.壳蛋白和壳聚糖:特性和应用。 Prog Polym Sci。 2006; 31:603-632。 17。 Croisier F,JérômeC。基于壳聚糖的生物材料用于组织工程。 EUR POLYM J。 2013; 49:780-792。 18。 Kim IY,Seo SJ,Moon HS等。 壳聚糖及其用于组织工程应用的衍生物。 生物技术副词。 2008; 26:1-21。2006; 8:203-226。16。rinaudo M.壳蛋白和壳聚糖:特性和应用。Prog Polym Sci。2006; 31:603-632。 17。 Croisier F,JérômeC。基于壳聚糖的生物材料用于组织工程。 EUR POLYM J。 2013; 49:780-792。 18。 Kim IY,Seo SJ,Moon HS等。 壳聚糖及其用于组织工程应用的衍生物。 生物技术副词。 2008; 26:1-21。2006; 31:603-632。17。Croisier F,JérômeC。基于壳聚糖的生物材料用于组织工程。EUR POLYM J。 2013; 49:780-792。 18。 Kim IY,Seo SJ,Moon HS等。 壳聚糖及其用于组织工程应用的衍生物。 生物技术副词。 2008; 26:1-21。EUR POLYM J。2013; 49:780-792。18。Kim IY,Seo SJ,Moon HS等。 壳聚糖及其用于组织工程应用的衍生物。 生物技术副词。 2008; 26:1-21。Kim IY,Seo SJ,Moon HS等。壳聚糖及其用于组织工程应用的衍生物。生物技术副词。2008; 26:1-21。2008; 26:1-21。
课程描述:本课程的目标是学习材料选择、用于人体的材料的重要特性以及人体如何与这些材料相互作用/反应。课程的第一部分将介绍用作生物材料的材料的结构和特性,包括金属、陶瓷、合成聚合物和生物聚合物。课程将回顾这些材料的结构以及结构如何定义材料的行为。课程将回顾材料的体积行为,包括广义胡克定律,并介绍新概念(包括热应变、表面特性和粘弹性)。课程将向学生介绍特性表征、故障分析和性能测试的问题。课程的第二部分将介绍生物相容性材料的定义和标准,重点是临床相关性。课程将介绍生物相容性材料选择的过程,涉及身体反应,包括免疫、细胞和组织相互作用、毒性和安全性。课程将讨论故障分析和性能测试。学生将分组使用课程中学到的工具和概念,使用生物材料分析市场上的植入物或设备。
。CC-BY-NC-ND 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是 由 此预印本的版权持有者(此版本于 2020 年 7 月 7 日发布。 ; https://doi.org/10.1101/2020.07.07.192203 doi: bioRxiv preprint
在本期特刊中,我们将介绍致力于生物材料设计和应用的研究和领域,重点是传染病和癌症适应症。具体来说,主题将涵盖生物材料如何伴随与疾病概况相关的知识来增强和扩展治疗选择。通过这样做,一个关键目标是弥合生物材料工程与临床疾病之间的界限,跨越多个科学学科以及将技术应用于应用所需的步骤。因此,我们鼓励提交论文(全文、通讯和评论),为特定疾病的应用提供跨学科的生物材料设计视角,重点是与特定设计相关的知识如何为生物材料产品的工程和应用提供信息,以实现更有效的治疗。
摘要胶质母细胞瘤(GBM)是最常见的原发性颅内肿瘤,中位生存时间不到两年。GBM的部分定义是通过广泛的细胞浸润到大脑的三维组织,破坏关键的大脑结构并使完全消除肿瘤的完全消除。对限制侵袭的治疗的搜索受到了缺乏培养范例的限制,这些培养范式概括了脑基质的重要方面,同时允许对侵入性细胞的高分辨率表征。我将描述我们团队介绍和利用此类模型的努力,包括我们使用三维透明质酸基质在体外种植肿瘤,分离侵袭性肿瘤细胞,并识别驱动侵袭的可靶向病变。这些方法的一个重要优势是能够对患者的现场指导活检进行基准发现,以确保最大的临床相关性。
摘要:微流体生物传感器的主要问题之一是生物层沉积。典型的制造工艺,例如陶瓷的烧制和硅与玻璃的阳极键合,都涉及高温暴露,任何生物材料都很容易受到高温的影响。因此,目前的方法是基于液体沉积,例如化学浴沉积 (CBD) 和电沉积 (ED)。然而,这种方法并不适用于许多生物材料。通过使用等离子体处理引入陶瓷-聚合物键合,部分解决了这个问题。该方法在等离子体激活和用聚合物盖密封系统之间引入了大约 15 分钟的生物改性窗口。不幸的是,一些生化过程相当缓慢,这段时间不足以将生物材料正确附着到表面。因此,介绍了一种基于生物改性后等离子体激活的新方法。至关重要的是,放电是有选择性的;否则,它会蚀刻生物材料。通过使用等离子处理和与聚合物粘合进行选择性表面改性,可以克服制造陶瓷生物传感器的困难。通过接触角测量和傅里叶变换红外 (FTIR) 分析研究了等离子体改性的区域。为了证明这一概念,制造了一个样品结构。结果表明该方法是可行的。
与生物材料应用相关的研究涵盖了组织工程和再生医学 (TERM) 领域的很大一部分,本研究课题致力于生物材料用途的多种可能性。本研究课题共收到 10 篇手稿,35 位作者参与其中,最终选出 6 篇。其中 4 篇为原创研究文章,2 篇为评论文章。生物材料最有趣的方面之一是我们能够研究所选材料的整个生命周期,可能的第一步是建模和材料科学。通常,当我们尝试开发一种新材料时,可以使用各种光谱方法(例如傅里叶变换红外光谱 (FTIR)、X 射线光电子能谱 (XPS))和显微镜方法(例如数字显微镜、扫描电子显微镜 (SEM) 或荧光显微镜)来评估表面和成分。这些方法需要根据起始材料和制造类型进行选择,这也是将生物材料划分为适当类别的另一个方面,因为金属基材料通常不适合 FTIR、荧光显微镜或通常不适合肿胀或酶分解相关的表征,但它们的途径或消除可以在生物系统中跟踪,例如,使用磁共振成像(MRI)、正电子发射断层扫描(PET)、计算机断层扫描(CT)。制造方法主要可分为以下几种:相分离(沉淀)、快速成型、超临界流体技术、致孔剂浸出、静电纺丝、3D 打印、冷冻干燥、离心铸造、模板和微图案化( Collins and Birkinshaw,2013;Tóth 等,2023)。然而,一般来说,对生物材料的主要要求是改善组织再生,并能够创造一个支持细胞附着、增殖、迁移和分化的环境(Juriga 等人,2022 年;Zhang 等人)。使用时间最长的生物材料之一是金属,因此可以肯定地说,这种材料经受住了时间的考验,然而,我们仍然可以看到金属生物材料的制造和处理方面的发展方向。在制造方面,传统方法是铸造金属,但金属的 3D 打印正在迅速引起人们的兴趣,然而,由于 3D 打印医疗器械的监管尚不明确,因此医疗器械中仍然应用铸造材料(Burnard
摘要:在以线材为原料的各种增材制造技术中,电弧丝增材制造 (WAAM) 具有较高的材料沉积速率,但尚未在锌合金中建立应用。与传统的永久性金属生物材料相比,锌合金可用作可降解生物材料。在这项研究中,采用 WAAM 加工商用纯锌以获得近乎致密的部件,并将通过 WAAM 加工的锌获得的性能与锻造 (WR) 锌样品进行了比较。发现 WAAM (41 ± 1 HV0.3) 部件的微观结构和硬度值与 WR (35 ± 2 HV0.3) 部件的微观结构和硬度值相似。体 X 射线衍射纹理测量表明,与 WR 对应物相比,WAAM 构建物表现出重纹理微观结构,在平行于构建方向 (BD) 的方向上峰值强度约为 <3 3–6 2> 或 <0 0 0 2>。 WAAM(0.45 mmpy)和 WR(0.3 mmpy)样品在模拟体液 (SBF) 中的腐蚀速率相似。在长达 21 天的时间内,WAAM 样品在 SBF 中的重量损失测量值略高于 WR 样品。MC3T3-E1 前成骨细胞在含有 WAAM-Zn 降解产物的培养基中以类似于 WR-Zn 的方式增殖,且表现健康。这项研究证实了通过 WAAM 处理 Zn 以用于生物可吸收金属植入物的可行性。
摘要:本研究对先进生物材料合金快速凝固Co-Cr-Mo-C合金的微观组织和腐蚀性能进行了研究。采用快速凝固铸造方法不仅使受快速凝固影响较大的ε -HCP相的形成量发生了显著变化,而且电化学行为和凝固组织也发生了显著变化。本研究利用OM、SEM、EDS、XRD和动态电位仪研究了快速凝固Co-Cr-Mo-C合金。将钴合金锭放入充满氩气的感应炉中熔化,然后浇铸到V型砂型铜模中,制备快速凝固样品,并在不同的冷却速度下测量其性能。微观组织检查表明合金的结构主要由柱状树枝状组织组成,碳化物分布在一次和二次树枝状臂内,快速凝固将获得更细的树枝状组织以及改进的碳化物分布。这种结构将改善合金的腐蚀行为,并在以林格氏溶液作为电解质进行测试时降低其腐蚀速率。关键词:生物材料;钴铬合金;快速凝固;髋关节和膝关节植入物;腐蚀。