摘要:增材制造技术(AM)能够制造出满足个性化需求的复杂结构,为生物医学领域的骨组织工程提供了前所未有的机遇。然而,传统的金属植入物由于与宿主组织的结合性差而产生许多不良影响,因此,具有多孔结构的新型材料植入物正在逐渐被开发出来,以适用于临床医疗应用。本文从增材制造技术和材料的角度,探讨生物骨组织工程理想材料的适宜制造工艺。首先回顾了现有的增材制造技术的方法和适用材料及其在生物医学中的应用,介绍了各种AM技术的优缺点。详细讨论并总结了包括金属和聚合物在内的材料特性、常用的AM技术、最新进展及其在骨组织工程中的应用。此外,还介绍了不同金属和聚合物材料面临的主要挑战,例如生物降解性、各向异性、促进成骨能力的生长因子和增强力学性能。最后,展望了AM技术和生物材料在骨组织工程中的发展前景。
L-377,202 前药由阿霉素 (Dox) 与前列腺特异性抗原 (PSA) 肽底物结合而成,该肽底物可在肿瘤部位被酶活性 PSA 裂解。尽管在 I 期试验中最初很有希望,但由于某种程度的非特异性激活和毒性问题,L-377,202(本文称为 Dox-PSA)的进一步测试已停止。为了提高 Dox-PSA 的安全性,我们将其封装到低温敏感脂质体 (LTSL) 中以绕过全身激活,同时在轻度高温 (HT) 下控制释放时保持其生物活性。观察到暴露于轻度 HT 的 PSA 表达细胞的细胞核中活性前药的时间依赖性积累,表明 Dox-PSA 有效地从 LTSL 中释放出来,被 PSA 裂解并以游离 Dox 的形式进入细胞核。此外,我们已经证明,在 37°C 下,负载 Dox-PSA 的 LTSL 可以阻断其生物活性,而与游离 Dox-PSA 相比,与轻度 HT 结合会导致 2D 和 3D PC 模型中的细胞毒性增强。更重要的是,与游离 Dox-PSA 相比,封装在 LTSL 中的 Dox-PSA 延长了其血液循环时间,并减少了 C4-2B 肿瘤小鼠心脏中的 Dox 积累,从而显著改善了 Dox-PSA 的治疗窗口。最后,在实体和转移性 PC 肿瘤模型中,负载 Dox-PSA 的 LTSL 与 HT 相结合显著延缓了肿瘤生长,其速度与用游离 Dox-PSA 治疗的小鼠相似。这表明该策略可以阻断 Dox-PSA 的系统性裂解而不会降低其在体内的功效,这可能是治疗局部晚期 PC 患者的更安全的选择。
版权所有 © 2022 作者出版 由 Materials Research Forum LLC 出版 Millersville, PA 17551, USA 保留所有权利。 未经出版商书面许可,不得以任何形式或任何方式复制或传播本书的任何内容。 作为书籍系列的一部分出版 材料研究基础 第 118 卷(2022 年) ISSN 2471-8890(印刷版) ISSN 2471-8904(在线版) 印刷版 ISBN 978-1-64490-176-2 ePDF ISBN 978-1-64490-177-9 本书包含来自真实且备受推崇的来源的信息。我们已尽合理努力发布可靠的数据和信息,但作者和出版商不对所有材料的有效性或使用它们的后果承担责任。作者和出版商已尝试追踪本出版物中复制的所有材料的版权持有者,如果未获得以这种形式出版的许可,我们向版权持有者道歉。如果任何版权材料未得到承认,请写信告诉我们,以便我们在将来的重印中纠正。由 Materials Research Forum LLC 在全球发行 105 Springdale Lane Millersville, PA 17551 USA http://www.mrforum.com 美国印刷 10 9 8 7 6 5 4 3 2 1
良好的学术工作取决于诚实和道德行为。作为一名学生,你的工作质量取决于遵守学术诚信原则和 NTU 荣誉准则,这是整个大学社区共同拥有的一套价值观。真理、信任和正义是 NTU 共同价值观的核心。作为 NTU 的学生,重要的是你要认识到你在大学所做的所有工作中理解和运用学术诚信原则的责任。不知道维护学术诚信涉及什么并不能成为学术不诚实的借口。你需要积极地为自己配备策略,以避免
这些项目旨在开发环保技术,将可再生生物质材料转化为新型绿色产品和化学品,作为石油衍生塑料和化学产品的替代品或替代品。参与项目的学生将接触跨学科的科学方法和途径,并将积极参与加拿大相关研究领域的其他领先科学家、研究人员和行业成员网络。
CRISPR-Cas9(成簇的规律间隔的短回文重复序列 - CRISPR 相关蛋白 9)平台最近被发现并随后发展成为一种精确的基因组编辑工具,它改变了生物医学。随着这些基于 CRISPR 的工具日趋成熟,基因编辑过程的多个阶段以及人体细胞和组织的生物工程也得到了发展。在这里,我们重点介绍了生物材料和基因组编辑技术发展中的最新交叉点。这些交叉点包括大分子的递送,其中生物材料平台已被利用来实现基因组工程工具向体内细胞和组织的非病毒递送。此外,为细胞培养设计类似天然的生物材料平台与基因组工程工具相结合,有助于对人类发育和疾病进行复杂的建模。这些领域生物材料平台的更深入整合可能对实现基因编辑在治疗人类疾病中的应用的新突破发挥重要作用。
最近发现和随后的CRISPR – Cas9(群集定期间隔短的短质体重复杂种蛋白9)平台作为精确的基因组编辑工具已转移了生物医学。由于这些基于CRISPR的工具已经成熟,因此基因编辑过程的多个阶段和人类细胞和组织的生物工程已经发展。在这里,我们重点介绍了生物材料和基因组编辑技术开发的最新交集。这些相互作用包括大分子的递送,在其中利用生物材料平台可以使基因组工程工具的非病毒递送到体内细胞和组织。此外,与基因组工程工具结合使用时,工程类似于本机的生物材料形式可促进人类发育和疾病的复杂建模。在这些领域的生物材料平台的更深入范围可能在实现基因编辑以治疗人类疾病的基因编辑方面发挥重要作用。
Cristina Eguizabal 博士拥有纳瓦拉大学生物和生物化学科学学位以及 UPV 细胞生物学和实验胚胎学博士学位。他曾在罗马第二大学 Massimo de Felici 教授的实验室工作,并加入英国剑桥大学格登研究所 Anne McLaren-Azim Surani 教授的研究小组。后来,她加入了由胡安·卡洛斯·伊斯皮苏亚 (Juan Carlos Izpisua) 领导的 CMRB,担任高级研究员。他对各种来源的胚胎干细胞和诱导性多能干细胞 (iPS) 以及细胞分化为各种细胞类型有着广泛的了解。 Eguizabal 博士是“SIG-ESHRE 干细胞”的前协调员。生殖生物学和 ART 硕士(UAB-Dexeus)教授。自 2013 年起,Eguizabal 博士一直担任 CVTTH 研究部门负责人以及 IIS Biocruces Bizkaia 细胞疗法、干细胞和组织组负责人。
课程目标 1. 在应用于医疗保健的技术领域进行正规培训,包括计算机科学和电信技术,以促进远程医疗的部署。 2. 了解提供远程医疗服务的基本要求。 3. 在各种医疗环境中区分和应用远程医疗技术和实践。 4. 该课程还将作为一种公众意识工具,促进和倡导使用新兴技术来扩大医疗保健范围并克服地理障碍来提供患者护理和教育。 课程内容 单元 1 远程医疗的基础和系统 TM 的历史和哲学,类型和挑战,标准和指南;TM 系统,TM 系统的组件,建立 TM 设施;TM 工作站和接口技术;远程医疗服务如何重塑医疗保健;患者医疗信息管理 - EMR、HER、医疗数据分析、分析方法;以病人为中心的护理 单元 2 远程医疗系统中的技术 TM 技术、数据传输 - 图像、音频、视频、时间序列数据; DICOM;云计算、TM 中的边缘计算、电信技术的类型、DSL、ADSL;TM 中的网络、网络拓扑;无线技术 - WiMAX、ZigBee 等、移动网络的演进 1G - 5G;移动健康;TM 中新兴技术的应用,如 3D 打印、AR/VR、区块链、大数据分析、物联网等、互联健康、数字健康。Unit-3 远程家庭护理和远程医疗的类别、技术、远程家庭护理的要求、慢性病管理的远程家庭护理;个人健康监测器、即时诊断测试仪器、智能生物医学服装、可穿戴监测器;电子健康和网络医疗、互联网和远程医疗、视频会议系统和多媒体数据交换。单元 4 道德、隐私、安全、法律、标准和其他问题维护和维持基于远程医疗的生态系统、卫生工作者的远程教育、道德问题、网络法、法律问题、低资源环境下的 TM、印度政府的数据保护法、ISO 标准、世卫组织医疗器械法规、美国食品药品监督管理局医疗保健标准课程材料必备文本:教科书