摘要。人工智能(AI)的出现与协同集成是目前生物材料开发和设计方向的范式转变策略。本文分析了人工智能与生物材料之间的联系,解释了预测模型对该领域发展方向的重大影响。通过仔细研究最新研究和独特应用,它说明了人工智能驱动的预测模型如何重新定义生物材料设计并进入一个异常准确和高效的新时代。这项研究涵盖了从深度神经网络到机器学习的各种人工智能技术,这些技术促进了使用大数据集预测生物材料的行为、特性和相互作用的预测模型的开发。它研究了人工智能(AI)如何加速筛选可行材料的方法,改善其质量并预测其体内反应。这可以帮助更快地将前沿发现转化为临床应用。本文进一步阐述了生物材料和人工智能集成领域的未来前景和问题,强调了跨学科合作、数据标准化和伦理问题的重要性。
现代神经科学越来越依赖 3D 模型来研究神经回路、神经再生和神经疾病。人们已经探索了几种不同的生物制造方法来创建 3D 神经组织模型结构。其中,3D 生物打印已显示出成为高通量/高精度生物制造策略的巨大潜力,可以满足对 3D 神经模型日益增长的需求。在这里,我们回顾了神经组织工程的设计原则。将打印技术应用于神经组织模型的生物制造的主要挑战是开发神经生物墨水,即具有可打印性和凝胶化特性且适用于神经组织培养的生物材料。这篇综述介绍了广泛的生物材料以及 3D 神经组织打印的基础知识。此外,还回顾了 3D 生物打印技术的进展,特别是针对生物打印神经模型。最后,讨论了用于评估制造的 2D 和 3D 神经模型的技术,并在可行性和功能性方面进行了比较。
羟基磷灰石 (Ca 10 (PO 4 ) 6 (OH) 2 ) 是一种磷酸钙生物材料,是处理空气、水和土壤污染的非常有前途的材料。事实上,羟基磷灰石 (Hap) 在环境管理领域非常有用,部分原因在于它特殊的结构和吸引人的性能,例如其强大的吸附能力、酸碱可调性、离子交换能力和良好的热稳定性。此外,Hap 能够构成一条有价值的资源回收途径。本综述的第一部分将致力于介绍 Hap 的结构并定义使其可作为环境修复材料的属性。第二部分将重点介绍其作为废水和土壤处理的吸附剂的用途,同时指出该修复过程所涉及的机制。最后,最后一部分将介绍 Hap 在催化领域应用的所有发现,无论是作为催化剂、光催化剂还是活性相载体。因此,以上所有内容都展示了在空气、水和土壤清洁中使用羟基磷灰石所带来的好处。
癌症免疫疗法利用纳米酮代表精密医学的尖端边界,专为增强基于CD8 + T细胞的免疫疗法而设计。这篇综述彻底描述了癌症纳米酮发育的不断发展的景观,强调了它们在调节免疫抑制性肿瘤微环境(TME)方面的优势作用,以提高CD8 + T细胞效率。我们严格地分析了纳米酮设计中的当前创新,重点是它们有效地输送肿瘤抗原和免疫刺激佐剂的能力。这些纳米甲虫的设计是为了克服TME的物理和免疫障碍,从而促进了CD8 + T细胞的稳健激活和增殖。的挑战,例如交付功效,安全性和可扩展制造业,以及未来的前景,其中包括开发特定生物材料方法以提供持久抗肿瘤免疫力的潜力。这种全面的分析不仅强调了癌症纳米甲烷在增强CD8 + T细胞反应方面的变化潜力,而且强调了对高级解决方案的关键需求,以克服限制当前免疫疗法功效的因素的复杂相互作用。
序号 优先研究主题领域 2025 1 生物能源 1.木质纤维素棕榈油废弃/收获残渣生物转化成生物燃料原料脂质(脂肪油)的技术。 2. 开发基于油或棕榈生物质的生物碳氢化合物和含氧化合物BBN生产技术,可在小规模/本地规模应用。 3. 开发利用棕榈油废液沼气/生物甲烷生产液体生物燃料的温和技术。 4、甘油转化生产丙二醇、乳酸、聚甘油等大宗化工产品的技术开发。 5. 开发更有效、可回收、更环保的生物柴油生产催化剂。 6. 优化商业模式/棕榈油基生物能源产品(BBN/沼气/生物质)的供应和利用商业化。 7. 全面研究强制性BBN实施的经济价值、可持续性和影响。 2 生物材料和油脂化学品
摘要:可生物吸附线的使用已成为一种非辅助提升面部组织的常见微创技术。它需要带刺的螺纹通过,该螺纹在面部和颈部的皮肤下形成支撑结构,以机械重新放置下垂的组织。poly(l-甲状腺素-CO-ε-丙酮酸酯)长期以来一直用作吸收缝合线,因此具有明确的功效和安全性。此生物材料还具有明确的生物相容性和降解曲线。本文审查的所有研究都表明,可吸收刺的螺纹提起螺纹是一种有效且易于耐受性的方法,可纠正面部和颈部软组织的ptosis,并且与次要和可逆的不良反应有关。大多数患者和外科医生都认为该手术令人满意,并以良好的效果。本出版物回顾了支持这些线程的降解,可吸收性,生物相容性,安全性和有效性的文献和临床数据,用于组织重新定位和面部恢复程序。关键字:poly(l-lactide-co-ε-辅助酮),非手术面部提升,可吸收性,微观评估,组织学
在这项研究中,使用胶原蛋白和氧化石墨烯(RGO)合成创新的导电杂种生物材料,以用作伤口敷料。用甘油塑料胶原蛋白凝胶(COL),并用辣根过氧化物酶(HRP)交联。FTIR,XRD和XPS证明了组件之间的成功相互作用。证明,增加RGO浓度会导致更高的电导率和负电荷密度值。RGO还提高了通过降低生物降解速率表达的水凝胶的稳定性。此外,通过酶促交联和多巴胺聚合的聚合也增强了水凝胶的稳定性,对I型I型胶原酶的酶促作用也得到了增强。然而,它们的吸收能力达到215 g/g,表明水凝胶具有吸收液体的高电位。这些特性的上升对伤口闭合过程产生了积极影响,在48小时后达到了84.5%的体外闭合率。这些发现清楚地表明,对于伤口愈合目的,这些原始的复合生物材料可能是可行的选择。
序号 优先研究主题领域 2025 1 生物能源 1.木质纤维素棕榈油废弃/收获残渣生物转化成生物燃料原料脂质(脂肪油)的技术。 2. 开发基于油或棕榈生物质的生物碳氢化合物和含氧化合物BBN生产技术,可在小规模/本地规模应用。 3. 开发利用棕榈油废液沼气/生物甲烷生产液体生物燃料的温和技术。 4、甘油转化生产丙二醇、乳酸、聚甘油等大宗化工产品的技术开发。 5. 开发更有效、可回收、更环保的生物柴油生产催化剂。 6. 优化商业模式/棕榈油基生物能源产品(BBN/沼气/生物质)的供应和利用商业化。 7. 全面研究强制性BBN实施的经济价值、可持续性和影响。 2 生物材料和油脂化学品
伤口愈合是一个复杂的生理过程,受许多因素影响,包括潜在的病理生理状况,伤口类型和治疗方式。本评论文章阐明了伤口的病理生理学,并根据类型和原因对伤口愈合进行分类。时间(组织,感染,水分,边缘)和TWA(组织,伤口,评估)框架在治疗选择中的作用。讨论了影响伤口愈合的关键因素,例如感染,氧合,肥胖,糖尿病,蛋白质营养不良,药物,癌症治疗和生活方式模式。此外,我们探讨了与异常伤口愈合有关的综合征和伤口敷料的各种类别:常规,基于生物材料和合成。审查强调了根据与生物组织的相互作用选择合适的敷料中适当的敷料为原发性和补充,被动或互动的重要性。还分析了用于伤口愈合的常见生物材料,包括多糖及其衍生物。最后,我们解决了高级伤口管理策略,例如高压氧疗法,电刺激和激光治疗,以及有关伤口敷料的调节方面。
使用体外成年动物干细胞培养肉类,为迫切关注气候变化,道德考虑和公共卫生提供了有希望的解决方案。然而,栽培的肉引入了前所未有的必要性:细胞生物材料的质量尺度产生,通过促进生物反应器中的细胞增殖实现。现有的体外细胞增殖方法就可伸缩性和经济生存能力而言遇到了重大挑战。在这个角度,我们讨论了细胞增殖优化的当前景观,重点是与细胞农业有关的方法。我们检查了管理增殖率的机制,同时还解决了内在和条件率的限制。此外,我们阐述了前瞻性策略,这些策略可能会导致在培养的肉类生产过程中显着提高细胞增殖阶段的总体可扩展性和成本效益。通过探索基本细胞周期研究,病理环境和组织工程的知识,我们可以确定创新的解决方案以优化细胞扩张。