文献表明,以生物甲烷为燃料的轻型车辆的生命周期成本可能比类似的汽油和柴油车辆高 15% 到 20%,而以液态生物甲烷为燃料的重型卡车的生命周期成本可能与柴油相似。然而,这种分析可能是二维的,并且其传达的信息有限。一方面,由于气候紧急情况和空气污染,柴油卡车和公共汽车的接受度将受到限制,并且在 2030 年以后柴油可能不再是生物甲烷的竞争对手。另一方面,生物甲烷生产是更大的循环经济、能源和环境系统的一部分。很难将能源载体生物甲烷与其生产系统分开。本质上,生物甲烷可以被视为广义沼气系统的产品或服务之一。沼气的一个优点是它可以从大多数湿有机废物或副产品中生产出来,包括食品废物、动物副产品(如粪肥)、农业残留物、污水污泥、工业生物废物(如来自屠宰场和食品和饮料加工行业的废物)。沼气生产是此类废物环境管理的一个要素;沼气厂还可以提供消化物,消化物含有原料中的大部分营养成分,可以成为极好的生物肥料。此外,还可以利用在将沼气升级为生物甲烷的过程中去除的二氧化碳作为具有附加值的产品。考虑到每年世界各地填埋的大量有机废物,生物甲烷资源非常重要,这些废物可以用来生产沼气、生物肥料和食品级二氧化碳,同时通过减少甲烷逸散排放和改善水质来改善环境。此外,在生物工业环境(如造纸厂、食品生产设施或其他类型的生物精炼厂)中应用沼气系统具有巨大的潜力,可以使工业脱碳,同时显著增加生物甲烷的资源。由于生物甲烷解决方案具有多种功能,因此在比较不同的技术时,需要广泛的评估方法来掌握广泛的相关因素:• 从整个生命周期分析来看,生物甲烷与化石燃料和其他生物燃料相比具有竞争力,特别适合长距离重型车辆。• 与其他可再生燃料相比,来自粪肥、残留物、废物和间作作物的生物甲烷估计具有较低的温室气体排放量。• 与柴油、汽油和其他生物燃料相比,生物甲烷可能有助于减少空气污染。• 与化石燃料相比,生物甲烷可以大大减少酸化。• 与柴油重型货车相比,生物甲烷可能有助于显著降低噪音水平。• 精心设计和应用的沼气系统可能对于将传统农业转变为更可持续的农业和有机农业至关重要。 • 常见类型的沼气解决方案作为废物和(废)水管理系统的组成部分,提供必要的社会技术系统服务。 • 沼气解决方案可能对改善能源供应/安全性和灵活性做出重要贡献。
摘要 ArianeWorks 是由法国国家空间研究中心和阿丽亚娜集团发起的创新平台,它加速了 Themis 的开发,Themis 是一种由液氧和生物甲烷推动的低成本可重复使用的火箭级演示器,为 2030 年的欧洲发射系列铺平了道路。根据其股东的生态设计愿景,ArianeWorks 在 Themis 计划中启动了生态设计战略的实施。在此背景下,本研究介绍了基于半可重复使用发射器的发射服务的生命周期评估,该发射器源自 Themis 并在圭亚那航天中心运行,该评估发生在 Themis 的早期设计阶段。该分析意味着开发一个特定的框架来解释下级的可重复使用性,需要使用经过调整的功能单元、在生命周期中引入新的阶段以及特定的参数化来描述其复杂性。本文接着进行了敏感性分析,以确定影响的主要驱动因素并支持设计权衡分析,然后估计最大可信缓解潜力。然后,概述了一种评估可重复使用性可能带来的环境效益的方法,并为所研究的发射服务提供了初步结果。影响评估结果证实,结构和推进剂的生产对阿丽亚娜火箭的生命周期影响最大。由于延长寿命阶段会产生额外影响,因此低级火箭的回收和翻新也发挥着重要作用,但也使一些影响减少成为可能,这些影响可以通过明确的惯例来隔离。跨大西洋运输阶段或测试和加油期间的推进剂消耗会造成不可忽略的影响,这些影响可以通过采用节俭的方法或技术创新来减轻。总体而言,该研究强调,与基线相比,对气候变化和资源枯竭的总影响可能减少约 30-80%。然而,尽管人们普遍认为可重复使用性可以减少生命周期影响,但研究表明,实际情况要复杂得多,因为从发射器的环境性能比较中得出的结论取决于惯例、市场参数、运营方案和环境影响类别。对于所研究的发射服务,结果表明,虽然可重复使用性可能会减少对资源枯竭的影响,但它可能会增加对气候变化的影响。此外,可重复使用性的任何环境效益都可能被这项技术所促进的全球太空活动的增长完全抵消,从而导致适得其反的反弹效应。本研究强调,由于采用生态设计方法,影响可能会减少,这将减轻这种影响。关键词:环境影响、生命周期评估、生态设计、发射器、可重复使用性、方法论 首字母缩略词/缩写
生物甲烷改进的访问推广项目的目的是增加SGN网络中“绿色”生物甲烷气的量。目前有一些要求对与抗生物甲烷有关以满足GDN /热能调节要求的生物甲烷生产商施加了高昂的成本。也存在与将生物甲烷体积注入网络有关的典型限制,SGN希望通过实施更智能的压力控制状态来解决该网络。该计划正在研究减轻这些问题的几种方法,其中包括局部CV计费区项目,将未经宣传或减少的预灭生物甲烷融合到网络中,以及对网络压力的智能控制,以积极偏向生物甲烷气体的进入。该计划将包括苏格兰的3个项目和SGN南部网络中的7个项目。
报告主题:生物能源如何为可持续的未来做出贡献 循环经济中生物甲烷作为运输燃料的观点 浪费的食物如何变成大量的温室气体 绿色氢气和沼气是替代天然气的首选 可持续生物氢的作用 欧洲生物甲烷产量创下新纪录 生物甲烷燃料提供负碳足迹 法国生物甲烷注入点地图 欧盟为所有成员国发布生物甲烷国家信息表 生物甲烷购买协议 (BPA):理解一切的指南 现有沼气厂的经济效率计算器 GBA 以英文出版了 2023 年第二版《沼气杂志》 爱尔兰生物甲烷可以取代全国网络上四分之一的天然气 德国沼气行业停滞不前而不是扩张 欧盟生物能源可持续发展报告 EBA 发布了 2023 年统计报告
正如Repowereu所强调的那样,生物甲烷可以在多样化的天然气供应来源,增强欧盟能源独立性并降低天然气价格波动的暴露率中发挥关键作用。到2030年,欧洲委员会目标是欧盟内生物甲烷生产的350亿立方米(BCM)。在2022年,欧盟生物甲烷的生产能力为3.4 bcm。目前,欧盟的大型投资正在释放生物甲烷潜力,但是需要进一步的融资,因为计划的投资仅覆盖未来需求的20%。气化技术位于商业化的最前沿,将有助于实现35 BCM目标。需要增强生物甲烷生产植物与气体网络之间的管道连接,以确保更大的生物甲烷吸收。按照荷兰义务的例子并设定更雄心勃勃的NECPS目标,将生物甲烷需求催化生物甲烷的需求对实现2030年生物甲烷的扩大至关重要。
• 生物甲烷的潜在应用范围取决于天然气与参考价格之间的价格差,而参考价格是自由市场交易的基准 • 生物甲烷仍然是天然气的昂贵替代品。因此,生物甲烷在特定领域的使用将取决于现有的专门支持手段。
当有机废物在垃圾填埋场腐烂时,会释放出含有生物甲烷的气体。如果任其发展,生物甲烷会导致气候变化,其破坏力是二氧化碳的 25 倍。好消息是,生物甲烷——当被我们的垃圾填埋场气体回收系统捕获时——是一种可再生天然气,可以像我们使用化石燃料天然气一样使用。我们对垃圾填埋场气体回收系统每年的升级意味着我们能够捕获越来越多的可再生天然气,这些天然气可用于供热和发电。这些系统升级还让我们更好地了解垃圾填埋场释放了多少生物甲烷。2016 年,垃圾填埋场产生的 74% 的生物甲烷被捕获,高于前一年的 71%。
沼气将在欧盟 2050 年实现净零排放未来的宏伟目标中发挥重要作用。欧盟委员会通过 REPowerEU 计划设定了到 2030 年在欧盟每年生产 350 亿立方米生物甲烷的目标,提供一种可再生和国产的天然气来源,可直接替代经济众多领域的化石天然气。这个目标雄心勃勃,但势头正在增强,整个行业正在迅速动员起来。生物甲烷工业伙伴关系 (BIP) 2 已经启动,使生物甲烷价值链的不同部分能够与欧盟委员会和成员国合作,为扩大生物甲烷生产规模以实现 350 亿立方米的目标奠定基础,并为到 2050 年进一步提升潜力创造先决条件。
宣布将GGSS扩展到2028年3月,以及去年生物量战略出版物中的野心将生物甲烷产量增加到2050年30-40TWH,政府正在调查未来的生物甲烷框架。不依赖补贴的新财务模型也在生物甲烷植物中出现,以及证书(GGC)包括碳捕获和存储,使生物甲烷碳负面且对于需要抵消其残留GHG排放的公司尤其有价值。在可再生运输燃料义务(RTFO)下提供的用于运输的绿色气体近年来也迅速增长,尤其是生物甲烷。移动性也可能是启动英国清洁氢部门发展的关键部门之一。
清洁工业交易应将投资引导到可以扩展可再生能源生产并脱碳的技术。Biomethane作为一种多功能且可扩展的可再生能源,具有弥合工业可再生能源需求差距的巨大潜力。持续的研发(R&D)对于提高生产率,开发尖端技术和处理新的可持续原料至关重要。但是,由于经济不确定性和监管挑战而引起的重大投资风险通常会阻碍进步。通过利用欧盟的资金计划和脱危工具,欧盟可以刺激创新并支持生物甲基生产和技术制造的长期增长,从而增强其在清洁能源方面的领导能力。