摘要 - 仿生手臂在截肢者的康复中起着重要作用,也有助于恢复他们的自信。在假肢的帮助下,人们的生活发生了巨大的变化,因为它们增加了活动能力,方便了日常琐事的完成,并提供了独立生活的手段。仿生手臂的工作取决于从截肢者肌肉收集的信号。当截肢者使用仿生手臂并弯曲其残肢肌肉时,特殊传感器会检测到自然产生的电信号,并将其转换成适当的仿生手部动作。仿生手臂只需思考要执行的动作即可充当真正的肢体。身体神经元产生的微小电信号有助于控制这些动作。它们由肌肉收缩产生,可以通过用户能够感觉到的皮肤上的电极进行测量。插入假肢轴的两个电极用于检测肌电信号,这些信号被传送到控制电子设备,然后这些信号被放大并用于激活五个电动机(每个手指一个),这些电动机移动手指和拇指,手会自动张开或闭合。因此,肌肉收缩的强度控制着速度和抓握力:弱信号产生缓慢的运动,强信号产生快速的运动。
是物联网的“眼睛”和“耳朵”,光学传感器和声学传感器是硬件系统中的基本组合。如今,主流硬件系统通常包含众多离散的传感器,转换模块和处理单元,往往会导致与人类感觉途径相比,相比之下,复杂的体系结构效率较低。在这里,提出了一种受人感知系统启发的视觉原告光电探测器,以启用具有计算能力的多合一视觉和声学信号检测。此范围不仅捕获了光,还可以光学记录声波,从而在单个单元中实现“观看”和“聆听”。栅极可调阳性,负和零光呼应会导致高度可编程的疾病。此可编程性可以执行各种函数,包括视觉特征推断,对象分类和声波操纵。这些结果展示了在神经形态设备中扩展受访方法的潜力,从而开辟了新的可能性来制作智能和紧凑的硬件系统。
Aerobotix Technosolutions,印度马哈拉施特拉邦科尔哈普尔 摘要 EMG 传感器已广泛应用于辅助技术、生物医学和人机界面。本文讨论了具有紧凑设计和信号采集的 EMG 传感器的开发。该系统捕获、过滤和放大肌肉信号,以使其可用于假肢、康复和诊断等许多领域。 关键词:EMG 信号、辅助设备、信号放大、信号处理、肌电图、仿生手臂、康复、生物医学、脑机接口、可穿戴技术、神经肌肉功能、假肢设备、电信号、神经康复、外骨骼。 I. 介绍 肌电图传感器捕捉肌肉收缩引起的电活动,这使得它能够应用于仿生手臂、康复、生物医学诊断、人机界面等广泛的领域。使用 EMG 传感器,我们可以记录肌肉产生的电活动,这有助于物理治疗师分析肌肉活动并识别薄弱的肌肉。因此,可以使用该数据为患者创建康复程序。它用于外骨骼和仿生手臂,为身体残疾的患者提供运动支持。它们有助于通过适应用户独特的肌肉模式和力量来定制辅助设备。传感器越紧凑,用户体验就越好。这些传感器将监测肌肉健康并防止慢性病患者的肌肉萎缩。据世界卫生组织称,全世界约有 3000 万人需要假肢或其他辅助设备。肌电图传感器在改善辅助技术领域的生活质量方面发挥着重要作用。机器学习的技术进步将提高传感器的效率。它将根据用户的数据进行学习,并能够在仿生手臂的情况下提供快速的实时反馈。本文介绍了一种紧凑型肌电图传感器电路的开发和实现。二、文献综述在 Crea 等人 (2019) 进行的研究中,肌电图信号允许用户使用肌肉收缩来控制假肢。根据 Liao 等人的研究,肌电图信号允许用户使用肌肉收缩来控制假肢。 (2020),研究使用带有机器学习算法的 EMG 传感器,这将实现精确控制,减少反馈时间和自然运动。根据 Basmajian 等人 (2017) 的说法,功能性电刺激 (FES) 对于脊髓损伤患者的康复 EMG 传感器起着至关重要的作用。刺激特定肌肉有助于患者恢复运动控制。
1低碳技术和设备跨学科研究中心,机械与车辆工程学院,荷兰大学,长沙大学410082,中华人民共和国2 Moe动力机械和工程学的主要实验室,机械工程学院,上海jiao jiao tong University,上海何亚大学100094,中华人民共和国4座苏和纳米热流体流动流动技术和能源应用,环境科学与工程学院,苏州科学技术大学,苏州苏州大学,江苏,江苏215009 215009科学学院生物启发材料与界面科学的主要实验室,中国科学院技术与化学技术研究所,中国人民共和国100190
摘要 - 全世界大约有2亿人将患有诸如视网膜炎色素炎和与年龄有关的黄斑de-生成疾病,并且正在开发各种视网膜视觉修复技术来靶向这些疾病。一种类似于人工耳蜗的技术使用电极网格来刺激其余的视网膜细胞。目前批准了两个视网膜假体品牌在患有晚期感光疾病的患者中植入。这些植入物的临床经验使这些设备恢复的视力与正常视力大不相同。为了更好地理解这项技术的结果,我们开发了Pulse2cept,这是一种开源的Python实施计算模型,该模型可以预测广泛植入物配置的视网膜假体患者的感知体验。模块化且可扩展的用户界面揭示了软件的不同构建块,从而使用户易于模拟新颖的植入物,刺激和视网膜模型。我们希望该图书馆通过提供一种工具来加速视觉假体的发展,从而为医学领域做出重大贡献。
如今,航空业面临着许多挑战。竞争加剧和资源短缺对未来的制造技术和轻量化设计提出了挑战。应对这些情况的一种可能性是激光增材制造 (LAM) 制造技术。然而,由于工艺新颖,仍然存在挑战需要应对,例如开发更多材料,特别是轻质合金,以及新的设计方法。因此,为了充分利用工艺潜力,创建了创新的材料开发和轻量化设计方法。材料开发过程基于对温度分布与有效工艺因素的分析计算,以确定 LAM 工艺的可接受操作条件。通过将结构优化工具和仿生结构纳入一个设计过程,实现了一种极轻量化设计的新方法。通过遵循这些设计原则,设计师可以在设计新飞机结构时实现轻量化节省,并将轻量化设计推向新的极限。
本节根据 35 USC §287(a) 规定,通知 www.betabionics.com/us-patents/ 上列出的产品受一项或多项美国专利保护。每种产品还可能受一项或多项外国专利保护,并且可能正在申请其他专利。产品和美国专利列表可能并不全面,未列出的其他产品也可能受一项或多项专利保护。
iLet 永远不会停止学习,并且始终会适应您的胰岛素需求。它会随着您的胰岛素需求随时间变化而不断适应。如果您在最初几天遵循日常习惯,适应效果会最好。不要立即挑战 iLet - 它只知道输入的体重。它还不知道您的胰岛素需求的其他任何信息,并且对于大多数用户来说,一开始会比较保守。
摘要:脑机接口 (BCI) 系统通过检索脑电波并将其解释为机器指令来控制外部设备。该系统利用脑电图 (EEG) 接收、处理和分类信号,通过大脑产生的信号进行控制。本文重点介绍 BCI 的心理任务设计,通过放置在三维 (3D) 打印耳机上的 EEG 梳状电极获取心理活动产生的信号。实验涉及眨眼左眼和右眼来控制原型轮椅的前后移动。实验测量是使用 Cyton 板进行的,信息通过蓝牙传输,随后经过处理并翻译给轮椅以执行活动。该系统已成功实现利用大脑信号对辅助设备的实时控制。关键词:辅助设备;脑机接口;Cyton;心理活动;心理任务;轮椅。