印度霍苏尔的Adhiyamaan工程学院。摘要::这项研究解决了视障人士在认识人,解释面部表情和参与社交活动时面临的挑战。当前的视觉植入物系统,例如RPS,患有低分辨率的磷酸图像,限制了它们在人工视觉解决方案中的有效性。为了克服这些局限性,我们的项目介绍了一种基于VT的开拓性方法,为自然图像识别提供了深度学习体系结构。我们的创新方法利用VT从用户周围的环境中提取和处理关键信息。通过理解视觉环境,该系统为视觉受损的个体提供了增强的看法,为伯爵,熟悉,性别,估计年龄,面部情绪,周围的物体以及附近个人的近距离提供了见解。将VT的整合到人工视觉系统中旨在超越当前技术的限制,从而为视力受损的人提供变革性的工具。这项研究不仅有助于人造视力的发展,而且有可能显着提高视觉障碍者的生活质量。索引术语 - 视觉变压器(VT),视网膜原理系统(RPS)
数学建模是在其所有流中建模有效,有效的人工智能的最重要方面,例如,弱-AI,strong-ai,super-ai,super-ai,ultra-ai,hultohoid,bunderoid,bionic brain,cyborg,cyborg,enerative-a,机器学习,机器学习,机器视觉,图像处理,图像处理,自然语言处理,自然语言处理,深度学习,ANN,ANN,GP,GA等。与数学建模一起在其中适合映射的位置也是重要的考虑因素。对于某些逻辑,数学模型无法理解准确性的理论建模和映射也非常有用。因此,在我的论文[1]中,“针对人形和超级人工智能应用的仿生大脑建模(BB)的见解”我同样使用了概念,无论有用的数学建模和映射和理论建模以及理论建模和映射和工程师“ Bionic Brain”用于使用ANN,GP,GA,GA,GA,GA和几种本质模型的“ Bionic Brain”。我向所有读者,学生,研究人员保证,本文非常有用,易于理解的数学和理论建模概念和映射仿生机器人机器人工程的仿生大脑,并涵盖所有分析,设计和开发必需品。
数学建模是在其所有流中建模有效,有效的人工智能的最重要方面,例如,弱-AI,strong-ai,super-ai,super-ai,ultra-ai,hultohoid,bunderoid,bionic brain,cyborg,cyborg,enerative-a,机器学习,机器学习,机器视觉,图像处理,图像处理,自然语言处理,自然语言处理,深度学习,ANN,ANN,GP,GA等。与数学建模一起在其中适合映射的位置也是重要的考虑因素。对于某些逻辑,数学模型无法理解准确性的理论建模和映射也非常有用。因此,在我的论文[1]中,“针对人形和超级人工智能应用的仿生大脑建模(BB)的见解”我同样使用了概念,无论有用的数学建模和映射和理论建模以及理论建模和映射和工程师“ Bionic Brain”用于使用ANN,GP,GA,GA,GA,GA和几种本质模型的“ Bionic Brain”。我向所有读者,学生,研究人员保证,本文非常有用,易于理解的数学和理论建模概念和映射仿生机器人机器人工程的仿生大脑,并涵盖所有分析,设计和开发必需品。
摘要:近年来,应变传感器已渗透到各个领域。传感器将物理信号转换为电信号的能力在医疗保健中非常重要。但是,获得具有高灵敏度,较大工作范围和低成本的传感器仍然具有挑战性。在此Pa -per中是由双层导电网络制成的可拉伸应变传感器,包括仿生多层石墨烯 - ECOFLEX(MLG- eCoflex)底物和多层石墨烯 - 碳纳米管(MLG -CNT)复合材料上层材料。两层的联合作用导致了良好的性能,其工作范围高达580%,高灵敏度(GF因子(GF MAX)为1517.94)。此外,使用仿生静脉样结构进一步设计了压力传感器,并具有MLG -ECOFLEX/MLG -CNT/MLG -ECOFLEX的多层堆叠,以沿厚度方向获得相对较高的变形。该设备具有高传感性能(灵敏度为0.344 kPa -1),能够监测人体的小运动,例如发声和手势。传感器的良好性能以及简单的Fabri构造程序(翻转)使其具有某些应用的潜在用途,例如人类健康监测和其他人类相互作用的其他领域。
摘要 本文分析了高性能仿生手假肢设计中主要问题的解决途径,提出了设计时必须同时解决的主要任务。通过对当今常见的仿生手假肢的结构和工作原理的分析,发现其主要缺点,这些缺点要么与设计的不完善有关,要么与旨在提供触觉的信息处理以及用于形成仿生假肢元件控制信号的生物信号的选择和处理等有关。提出了仿生假肢结构开发的概念,该概念涉及将作者提出的基于内骨骼的假肢机电设计与触觉传感器以及特殊设计的 EMG 传感器和执行器相结合,它们根据物联网原理组合成一个网络,其中包括使用专门的信息支持来积累和处理这些信号,并基于人工智能和云技术元素的应用为假肢执行机构和执行器形成相应的控制信号。
手动相互作用与对象相互作用受到手的触觉信号的支持。这种触觉反馈可以通过体感皮质(S1)的心脏内微刺激(ICM)在脑控制的仿生手中恢复。在基于ICMS的触觉反馈中,可以通过基于仿生手上力传感器的输出调节刺激强度来发出接触力,这又调节了感知的感觉的幅度。在本研究中,我们在三名参与者中衡量了基于ICMS的力反馈的动态范围和精度,这些参与者植入了S1中的微电极阵列。为此,我们测量了由于ICM振幅增加以及参与者区分不同强度水平的能力而导致的感觉幅度的增加。然后,我们通过实施“仿生” ICMS培训来评估是否可以提高反馈的忠诚度,旨在唤起神经元活动的模式,这些模式更紧密地模仿那些自然接触的人,并一次通过多个通道传递ICMS。我们发现,多通道仿生ICMS产生的感觉比单通道对应物更强,更有区别。最后,我们用仿生手实施了仿生多通道反馈,并让参与者执行合规性歧视任务。我们发现,仿生多通道触觉反馈对单渠道线性对应物产生了改善的歧视。我们得出的结论是,多通道仿生的ICMS传达了精细分级的力反馈,该反馈更接近自然接触所赋予的灵敏度。
液滴撞击动力学一直是液滴研究的重点和热点,深入挖掘液滴撞击动力学机理有利于自上而下指导和优化材料设计。随着高速成像技术的发展和创新[13],液滴撞击的瞬态流动可以在微观时间尺度上被清晰地记录下来。单个液滴在不同表面的撞击得到了更广泛的研究。Richard等人认为液滴撞击光滑超疏水表面的接触时间与撞击速度无关,而与液滴半径的3/2次方成正比。[14]对于具有圆对称扩散和反冲的液滴撞击,存在一个接触时间的理论极限( / / 2.2 0 3 t R τ ρ σ = ≥ ∗,[15]其中,ρ是液体的密度,R 0是液滴半径,σ是其表面张力,t是固液接触时间)。为了突破这一极限,科学家通过设计和修改超疏水材料的表面结构,强化和精确控制单个液滴的反弹行为,如减少4倍接触时间的煎饼反弹[16]和7300 r min −1 的旋转反弹[17]。虽然这些研究已经被广泛应用于解决喷墨打印[18]、微流体[19]和喷雾[20]的问题,但较少受到关注的多液滴模型在自然界、日常生活和工程中更为常见和适用(例如,冻雨对电网的灾难性影响)。多液滴模型可分为连续液滴[21]、液滴列车[22]、同时液滴[23]和液滴喷雾[24]等。越接近真实情况,越复杂,研究难度越大。[25]作为该领域的先驱,Fujimoto等人[26]和Schwarzmann等人[27]在多液滴模型中[28]进行了系统研究。采用闪光照相法和数值模拟相结合的方法,研究了液滴直径和撞击速度对液滴撞击固体的影响。[26,27] Sanjay等人用撞击油滴从超疏水表面提起静止的油滴,观察到了随着韦伯数(ρσ=02WeDv,其中D0为液滴直径,v为撞击速度)和质心偏移而产生的六种结果,其中四种结果不是聚结而是反弹。[28] Damak等人实验研究了液滴连续撞击超疏水表面的最大膨胀直径和回缩速率,并建立了通用模型来描述它们。[29]由于多体问题的复杂性和相互作用,大多数学者主要使用数值模拟
伦敦,HA7 4LP,英国 摘要 采用多丝电弧增材制造 (MWAAM) 成功制备了 TC4/NiTi 多材料结构件。本文展示了仿生梯度夹层构建策略下 TC4/NiTi 多材料结构件的界面特征和力学性能。结果表明,获得了极限抗压强度为 (1533.33±26 MPa) 的 MWAAM TC4/NiTi 梯度异质合金。优异的压缩行为主要归因于梯度区的良好过渡,EBSD 分析表明梯度区的晶粒尺寸细小,差异施密特因子值较小。随着 NiTi 含量的增加,从 TC4 区到 NiTi 区的相组成依次演变为:α-Ti + β-Ti → α-Ti + NiTi 2 → NiTi 2 → NiTi 2 + NiTi → NiTi + Ni 3 Ti。梯度异质合金的显微硬度范围为310±8~230±11 HV,其中区域B处硬度最高,为669.6±12 HV,这是由于NiTi 2 强化相的析出所致;试样的极限断裂应力为1533.33±26 MPa,应变为28.3±6%;在10次加载/卸载循环压缩试验过程中,MWAAM TC4/NiTi梯度异质合金的不可回复应变逐渐趋近于2.75%。
电弧增材制造零件性能的提升依赖于结构创新和定制打印,自然优化的结构可以为设计制造提供灵感。本文以Crysomalon squamiferum壳的生物结构为灵感,采用多丝电弧增材制造(MWAAM)技术设计并制备了层状TC4/Nb多材料合金零件。利用EDS、SEM、EBSD和力学性能试验机研究了MWAAM加工仿生异质TC4/Nb多材料合金零件的界面反应、相组成、微观组织演变、晶体生长、力学性能和裂纹扩展。结果表明,MWAAM TC4/Nb多材料合金试样不同层间形成了良好的冶金结合;Ti/Nb多材料合金零件主要由α-Ti、β-Ti和(Nb,Ti)固溶体相组成。随着Nb含量的增加,从TC4层到G1层,相形貌经历了一个连续的转变过程:片层状α+β→细片层状α+短棒状α+β→针状α+β→细针状α+β。此外,随着Nb含量的增加,TC4/Nb多材料合金组分从TC4层到G2层的晶粒尺寸由3.534μm逐渐减小到2.904μm。TC4/Nb多材料合金从TC4层到G2层的显微硬度范围为404.04~245.23HV。TC4/Nb多材料合金试样具有较高的压缩强度和极限拉伸强度分别为2162.64±26MPa和663.39MPa,对应的应变量分别为31.99%和17.77%。优异的力学行为主要归因于层间晶粒尺寸的梯度转变和组织演变的良好结合;拉伸试验过程中裂纹扩展主要以裂纹偏转和多级开裂为主;TC4/Nb多材料合金构件中TC4层的强度高于G1层和G2层。
电弧增材制造零件性能的提升依赖于结构创新和定制打印,自然优化的结构可以为设计制造提供灵感。本文以Crysomalon squamiferum壳的生物结构为灵感,采用多丝电弧增材制造(MWAAM)技术设计并制备了层状TC4/Nb多材料合金零件。利用EDS、SEM、EBSD和力学性能试验机研究了MWAAM加工仿生异质TC4/Nb多材料合金零件的界面反应、相组成、微观组织演变、晶体生长、力学性能和裂纹扩展。结果表明,MWAAM TC4/Nb多材料合金试样不同层间形成了良好的冶金结合;Ti/Nb多材料合金零件主要由α-Ti、β-Ti和(Nb,Ti)固溶体相组成。随着Nb含量的增加,从TC4层到G1层,相形貌经历了一个连续的转变过程:片层状α+β→细片层状α+短棒状α+β→针状α+β→细针状α+β。此外,随着Nb含量的增加,TC4/Nb多材料合金组分从TC4层到G2层的晶粒尺寸由3.534μm逐渐减小到2.904μm。TC4/Nb多材料合金从TC4层到G2层的显微硬度范围为404.04~245.23HV。TC4/Nb多材料合金试样具有较高的压缩强度和极限拉伸强度分别为2162.64±26MPa和663.39MPa,对应的应变量分别为31.99%和17.77%。优异的力学行为主要归因于层间晶粒尺寸的梯度转变和组织演变的良好结合;拉伸试验过程中裂纹扩展主要以裂纹偏转和多级开裂为主;TC4/Nb多材料合金构件中TC4层的强度高于G1层和G2层。