本研究的目的是概述用于替代视力丧失的仿生眼,指出其缺陷并概述非侵入性刺激视觉皮层功能区域的其他可能性。该综述不仅强调了对主要改变的细胞结构的损害,还强调了对所有其他水平和垂直局部结构的损害。基于大量功能性磁共振成像和电生理学方法的结果,作者重点研究了色素性视网膜病变 (PR) 和老年性黄斑变性 (AMD) 中整个视觉通路的病理学。本研究概述了用于替代视力丧失的可能系统的最新情况。这些系统包括使用眼内植入物进行刺激,刺激视神经和外侧膝状体到视觉皮层。第二部分涉及图像处理技术的设计及其转化为对大脑未受损部分的颅脑刺激形式,该形式受专利保护。这是对当前替代丧失视力的可能性的全面概述,并提出了一种新的非侵入性刺激视觉皮层功能神经元的方法。
随着人工智能的发展,可穿戴视觉仿生设备正在取得显著进步。然而,传统的硅视觉芯片往往面临着高能量损失和模拟复杂生物行为的挑战。在本研究中,我们通过精心引导有机分子的排列,构建了范德华 P3HT/GaAs 纳米线 PN 结。结合肖特基结,这实现了多方面的类似鸟类的视觉增强,包括宽带非易失性存储、低光感知和接近零功耗的工作模式,无论是在单个设备和任意基板上的 5×5 阵列中。具体来说,我们实现了超过 5 位的内存传感和计算,具有负和正光电导性。当与两种成像模式(可见光和紫外线)结合时,我们的储层计算系统对颜色识别的准确率高达 94%。它实现了运动和紫外线灰度信息提取(显示防晒霜),从而实现融合视觉成像。这项工作为宽带、高度仿生的光电神经形态系统提供了有前景的材料和器件的联合设计。
摘要:手臂、手和指尖的活动功能和感觉信息的丧失妨碍了患者的日常生活活动 (ADL)。现代仿生假手可以弥补失去的功能并实现多自由度 (DoF) 运动。然而,由于传感器有限和缺乏稳定的分类算法,市售的假手通常具有有限的自由度。本研究旨在提出一种通过表面肌电图 (sEMG) 估计手指关节角度的控制器。用于训练的 sEMG 数据是使用商用 EMG 传感器 Myo 臂带收集的。提取时域中的两个特征并将其输入到具有外生输入的非线性自回归模型 (NARX) 中。使用 Levenberg-Marquardt 算法对 NARX 模型进行预选参数训练。与目标相比,模型输出的回归相关系数 (R) 在所有测试对象中均大于 0.982,信号范围为 [0, 255] 的任意单位时均方误差小于 10.02。研究还表明,所提出的模型可用于日常生活运动,具有良好的准确性和泛化能力。
针对水下无人车辆(UUV)的自主导航能力的要求,提出了一种基于Snell窗口内极化模式的水下导航的新型仿生方法。受到生物的启发,极化导航是一种无卫星的导航计划,并且有很大的潜力在水中使用。但是,由于水下环境复杂,是否可以实现UUV两极化导航令人怀疑。为了说明水下极化导航的可行性,我们首先建立了水下极化模式的模型,以证明Snell窗口内的水下极化模式的稳定性和可预测性。然后,我们基于开发的极化信息检测设备进行水下标题确定的静态和动态实验。最后,我们获得了水下极化模式,并在不同的水深度进行跟踪实验。水下极化模式的实验结果与模拟一致,这证明了所提出的模型的正确性。在5 m的水深下,跟踪实验的平均角度和位置误差分别为14.3508°和4.0812 m。可以说明水下两极化导航是可以实现的,精度可以满足UUV的实时导航要求。这项研究促进了水下导航能力和海洋设备的发展。
1“ 2021 Factbook”,半导体行业协会。https://www.spoomendonductors.org/wp-content/uploads/2021/05/2021-sia-factbook- final1.pdf。2“ Apple iPhone 12将由已在新iPad Air中看到的A14 Bionic 5nm芯片提供动力?”新闻18,2020年10月13日。https://www.news18.com/news/tech/ahead/ahead-of-iphone-12-launch-apple-apple-execs-shed-light-a14-bionic-design-bionic-design-performance-29588803.html。3“全球晶圆能力,2021-2025”,IC Insights。https://www.icinsights.com/data/reports/5/5/9/brochure.pdf?parm=1625240565。 4“多少足够?”战略和国际研究中心,2021年4月21日。https://www.csis.org/analysis/how-much-enough。 5“让筹码落在他们可能的地方:补贴和半导体的故事”,《经济合作与发展组织》,2019年12月4日。https://www.oecd.org/trade/trade/let-chips-chips-chips-fall-where-where-where-may/。 6“由于芯片短缺,福特在更多植物上闲置或遏制输出,”《华尔街日报》,2021年6月30日。https://www.wsj.com/articles/articles/articles/articles/articles/articles/ford-close-close-close-close-curs-orput-curb-curnput-curlput-atput-ap-some-plants-some-plants-bplants-bape-chip-Shortage-Shortage-Shortage-11625068975。 7“没有筹码,没有提示:计算机芯片短缺如何威胁着数千个餐厅服务工作,”《华盛顿邮报》,2021年6月11日。https://www.washingtonpost.com/businse.com/business/2021/06/06/11/restaurant-workers-workers-workers-workers-workers-computer-computer-computer-chip-shortage/。 8“ 2021年的半导体短缺”,高盛,2021年3月17日。https://www.goldmansachs.com/insights/pages/pages/the-spoomendonductor-shortoge-shortage-of-2021.html。https://www.icinsights.com/data/reports/5/5/9/brochure.pdf?parm=1625240565。4“多少足够?”战略和国际研究中心,2021年4月21日。https://www.csis.org/analysis/how-much-enough。5“让筹码落在他们可能的地方:补贴和半导体的故事”,《经济合作与发展组织》,2019年12月4日。https://www.oecd.org/trade/trade/let-chips-chips-chips-fall-where-where-where-may/。6“由于芯片短缺,福特在更多植物上闲置或遏制输出,”《华尔街日报》,2021年6月30日。https://www.wsj.com/articles/articles/articles/articles/articles/articles/ford-close-close-close-close-curs-orput-curb-curnput-curlput-atput-ap-some-plants-some-plants-bplants-bape-chip-Shortage-Shortage-Shortage-11625068975。7“没有筹码,没有提示:计算机芯片短缺如何威胁着数千个餐厅服务工作,”《华盛顿邮报》,2021年6月11日。https://www.washingtonpost.com/businse.com/business/2021/06/06/11/restaurant-workers-workers-workers-workers-workers-computer-computer-computer-chip-shortage/。8“ 2021年的半导体短缺”,高盛,2021年3月17日。https://www.goldmansachs.com/insights/pages/pages/the-spoomendonductor-shortoge-shortage-of-2021.html。
视觉变形金刚在各种计算机视觉任务中取得了令人鼓舞的进步。一个普遍的信念是,这归因于自我注意力在对特征令牌之间的全球依赖性建模中的能力。然而,自我注意力仍然面临着密集的预测任务的几个挑战,包括高计算复杂性和缺乏理想的电感偏见。为了减轻这些问题,重新审视了视觉变压器与Gabor过滤器的潜在优势,并提出了使用卷积的可学习的Gabor过滤器(LGF)。LGF不依赖自我注意力,它用于模拟生物学视觉系统中基本细胞对输入图像的响应。这鼓励视觉变形金刚专注于跨不同尺度和方向的目标的歧视性特征表示。此外,基于LGF设计了仿生焦点视觉(BFV)块。此块从神经科学中汲取灵感,并引入了双路径前进网络(DPFFN),以模仿生物学视觉皮层的平行和级联信息处理方案。此外,通过堆叠BFV块开发了一个称为焦视变压器(FVITS)的金字塔骨干网络的统一家族。实验结果表明,FVIT在各种视觉任务中表现出卓越的性能。在计算效率和可扩展性方面,与其他同行相比,FVIT具有显着优势。
肿瘤免疫治疗是通过人工刺激免疫系统来增强抗癌反应,已成为临床治疗癌症的一种有力策略。近年来免疫治疗药物的批准数量不断增加,许多治疗正处于临床和临床前阶段。尽管取得了这些进展,但由于实体瘤特殊的肿瘤异质性和免疫抑制微环境,使得大多数癌症病例的免疫治疗难以进行。因此,了解如何提高各种免疫治疗药物的瘤内富集程度和反应率是提高疗效和控制不良反应的关键。随着材料科学和纳米技术的发展,纳米颗粒等先进生物材料和T细胞递送疗法等药物递送系统可以提高免疫治疗的有效性,同时减少对非靶细胞的毒副作用,为提高免疫治疗效果提供了创新思路。本综述主要讨论了肿瘤细胞免疫逃逸的机制,并重点讨论了当前的免疫治疗(如细胞因子免疫治疗、治疗性单克隆抗体免疫治疗、PD-1/PD-L1治疗、CAR-T治疗、肿瘤疫苗、溶瘤病毒和其他新型免疫)及其挑战以及最新的纳米技术(如仿生纳米粒子、自组装纳米粒子、可变形纳米粒子、光热效应纳米粒子、刺激响应纳米粒子和其他类型)在癌症免疫治疗中的应用。
1 . 沈阳航空航天大学机电工程学院,沈阳 110136 2 . 航空数字化制造工艺国防重点学科重点实验室,沈阳 110136 3 . 吉林大学工程仿生教育部重点实验室,长春 130022 摘要 应用热压技术,提出了一种简单、经济有效的方法来制造具有稳健超疏水润湿状态的微结构高密度聚乙烯 (HDPE) 表面。在热压过程中,柔性模板中的微网格和微凹槽被 PE 熔体填充。随后,在 PE 薄膜表面形成两级微结构。当 5 μL 水滴滴在该 PE 薄膜表面时,其接触角为 151.8˚±2˚,滚动角 > 90˚。计算出表面上的水钉扎能力,滚落角是指定水滴体积的二次函数。具体而言,由于表面的固体-蒸汽复合界面,HDPE 薄膜上出现了 356 μN 的水钉扎力。同时,自清洁和浸泡测试表明,具有微柱的 HDPE 表面在外部压力下表现出强大的 Cassie 浸渍润湿状态。所提出的微结构表面表面制造方法是开发液滴操纵和功能性仿生聚合物表面的合适候选方法。
1 . 沈阳航空航天大学机电工程学院,沈阳 110136 2 . 航空数字化制造工艺国防重点学科重点实验室,沈阳 110136 3 . 吉林大学工程仿生教育部重点实验室,长春 130022 摘要 应用热压技术,提出了一种简单、经济有效的方法来制造具有稳健超疏水润湿状态的微结构高密度聚乙烯 (HDPE) 表面。在热压过程中,柔性模板中的微网格和微凹槽被 PE 熔体填充。随后,在 PE 薄膜表面形成两级微结构。当 5 μL 水滴滴在该 PE 薄膜表面时,其接触角为 151.8˚±2˚,滚动角 > 90˚。计算出表面上的水钉扎能力,滚落角是指定水滴体积的二次函数。具体而言,由于表面的固体-蒸汽复合界面,HDPE 薄膜上出现了 356 μN 的水钉扎力。同时,自清洁和浸泡测试表明,具有微柱的 HDPE 表面在外部压力下表现出强大的 Cassie 浸渍润湿状态。所提出的微结构表面表面制造方法是开发液滴操纵和功能性仿生聚合物表面的合适候选方法。
3M-Nano是纳米级的每年一次的操纵,制造和测量国际会议;它将于2026年8月在中国苏州举行。该会议系列的最终野心是弥合纳米科学和工程科学之间的差距,旨在针对技术机会和新市场。纳米级的操纵,制造和测量的先进技术有望在许多应用领域中采用新颖的革命性产品和方法。与3M-NANO主题有关的研究领域工作的科学家被邀请提交论文。将在IEEE Xplore数据库和EI Compendex中提交所有接受的完整论文(在会议上和IEEE格式之后提交)。建议在IEEE Trans中发布选定的论文。自动化科学与工程,国际。j的纳米制造,IFAC机电货币学,int。j of Optomechatronics,Micro-Bio Robotics的J,仿生工程杂志,光(科学与应用),光学和精密工程,国际极端制造杂志,《今日材料》本文和其他科学/EI期刊。组织者:苏州高级研究所,中国科学技术大学纳米纳米研究中心,中国中国长春科学与制造业,中国组织者:阿尔胡斯大学,丹麦沃里克大学,英国德马克沃里克大学,英国贝德福德郡沃里克大学,英国教育部,ZALE MICRO和NANO Instuction,Chrone and Nano Instuction of Chrence and and Chronemurant of Charno and Nano and Nano and and and and and and Chronemurant of Charno