已经设计出许多抗 DcpS 的二核苷酸帽类似物,它们通过将三磷酸盐桥中的一个或多个氧原子用另一个原子或原子组替换(例如,带有非桥接 g - O -到-S、g - O -到-BH 3 、b - O -到- BH 3 的化合物、39,40 桥接 b - g - O -到-CH 2 或 b - g - O -到-NH、41 – 43 或 5 0 - O -到-S [5 0 -PSL] 44 ),并且在兔网织红细胞裂解物中显示出优异的效力和稳定性。然而,这些化合物的潜在用途从未在体内得到证实。在这里,我们试图开发一种基于配体的方法将二核苷酸帽类似物递送到细胞中,该方法也适用于其他生物相关的二核苷寡磷酸盐。作为潜在的转运蛋白,我们评估了几种之前被确定为各种(大)生物分子转运载体的小分子配体(图 1)。测试的配体包括使用受体介导的内吞途径的叶酸;45 生物素,主要由高亲和力生物素转运蛋白吸收;46 葡萄糖,通过协助扩散进入细胞;47 和胆固醇,促进小分子被动扩散进入细胞。48 为了选择最活跃的配体和理想的细胞培养模型,我们首先使用流式细胞术、共聚焦显微镜和荧光相关光谱 (FCS) 研究了简单的荧光探针。基于这些研究,我们合成了几种用精选配体和荧光染料修饰的帽类似物,以验证这些配体能够将带负电荷的二核苷寡磷酸盐转运到细胞中。在确认概念证明后,我们合成了一系列对 DcpS 敏感性不同的帽类似物,并将它们与最有效的配体结合,以检查它们在体外和对乳腺癌细胞的生物活性。结果,我们鉴定出几种具有良好细胞通透性、高活性和体外稳定性以及诱导癌细胞凋亡能力的化合物。
摘要:现代邻近标记技术在理解生物分子相互作用方面取得了重大进展。然而,当前的工具主要使用与复杂生物环境不兼容的激活模式,限制了我们在动物模型中研究细胞和组织水平微环境的能力。在这里,我们报告了 μ Map-Red,这是一个邻近标记平台,它使用红光激发的 Sn IV 二氢卟酚 e6 催化剂来激活苯基叠氮化物生物素探针。我们通过展示体外通过多层组织的光子控制蛋白质标记来验证 μ Map-Red,然后我们将我们的平台应用于纤维素以标记 EGFR 微环境,并通过 STED 显微镜和定量蛋白质组学验证性能。最后,为了展示复杂生物样本中的标记,我们在小鼠全血中部署了 μ Map-Red 来分析红细胞表面蛋白。这项工作代表了在复杂组织环境和动物模型中基于光的邻近标记方法的重大进步。
成分 鸡肉、鸡肉粉、玉米蛋白粉、酿酒米、黄玉米粉、小麦粉、植物油(中链甘油三酯来源)、玉米胚芽粉、大麦、天然香料、鱼油、干蛋制品、L-精氨酸、麦麸、鱼粉、磷酸一钙和磷酸二钙、氯化钾、盐、碳酸钙、L-赖氨酸盐酸盐、维生素 E、氯化胆碱、L-抗坏血酸-2-多磷酸盐(维生素 C)、硫酸锌、硫酸亚铁、烟酸(维生素 B-3)、维生素 A 补充剂、硝酸硫胺素(维生素 B-1)、硫酸锰、大豆油、泛酸钙(维生素 B-5)、维生素 B-12 补充剂、核黄素补充剂(维生素 B-2)、硫酸铜、盐酸吡哆醇(维生素 B-6)、大蒜油、叶酸(维生素 B-9)、亚硫酸氢钠甲萘醌复合物(维生素 K)、生物素(维生素 B-7)、碘酸钙、维生素 D-3 补充剂、亚硒酸钠。
在本文中,我们为一名患者展示了对坟墓疾病的不寻常且可能表现出来的患者。通常以速度性心脏,疲劳,体重减轻和温度不耐受为特征,坟墓的疾病是甲状腺功能亢进症的最常见原因,在某些情况下,可能体现在急诊毒性的性毒性瘫痪(TPP)的危及生命中。我们报告了患者首次发病的患者的案例研究,他仅出现了TPP而没有任何其他持续甲状腺毒性症状的症状。补充,他经历了心动过缓和右捆绑块(RBBB)的发作。钾更换后瘫痪,RBBB在开始抑制抑制剂后解决。本文介绍了患者的临床评估和治疗,概述了防止反弹性高钾血症的措施,并讨论了生物素干扰激素测定,肾上腺不足以及甲状腺毒性导致的心脏阻滞的问题。还提供了TPP的文献和病理生理学的综述。
摘要:本研究旨在开发一种新型载5-氟尿嘧啶(5-FU)磁铁矿膨润土纳米载体,用于靶向抗癌药物输送,以获得最有利的治疗反应,并提供有效和安全的体外抗癌治疗。通过静电相互作用反应将氧化铁在膨润土中功能化,形成磁铁矿膨润土纳米粒子。生物素的靶向配体与谷胱甘肽的交联剂结合,在磁铁矿膨润土中形成生物素化的谷胱甘肽。利用不同的分析技术对合成的纳米载体体系进行表征。根据Scherrer方程,载体和载5-FU的载体的平均粒径为31nm。在SEM分析中,载5-FU和未载5-FU的载体分别形成片状和针状和花状结构。磁铁矿膨润土纳米载体中的5-氟尿嘧啶的负载量为59.0%,包封率为72.13%。研究了载有 5-FU 的纳米载体在肺癌细胞 (A549) 中的体外细胞毒性作用。合成的载有 5-FU 的纳米载体在肺癌 A549 细胞中表现出细胞毒性和细胞凋亡增加。因此,结果表明,载有 5-FU 的磁铁矿膨润土具有强大的体外抗癌和抗氧化活性,可作为肺癌治疗的潜在药物载体。
Lamb Meal, Chicken Meal, Oatmeal, Fresh Chicken, Whole Grain Barley, Whole Brown Rice, Millet, Chicken Fat (Preserved With Mixed Tocopherols, a Natural Source of Vitamin E), Salmon Meal (Preserved with Vitamin E and Rosemary Extract), Green Peas, Whole Eggs, Chicken Liver, Potassium Chloride, Salmon Oil (Source of DHA), Quinoa, Flaxseed, Lecithin, DL蛋氨酸,菊苣根(菊粉),维生素A,维生素D3,维生素E,烟酸蛋白,维生素C,肌醇,pantotol,D-钙硫酸盐,维生素BL,核糖叶艾比,β-胡萝卜素,维生素B6,维生素B6,叶黄素,生物蛋白B12,蛋白蛋白蛋白蛋白蛋白蛋白蛋白,蛋白蛋白蛋白质,质子蛋白蛋白质,柔韧性蛋白质,蛋白蛋白,蛋白蛋白,蛋白蛋白,蛋白质,蛋白蛋白,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白蛋白,蛋白质,蛋白质碘酸钙,硒酵母,番茄(番茄的天然来源),葡萄糖胺,胆碱氯化物,丝兰schidigera提取物,l-肉碱,曼南纳 - 寡糖,胡萝卜,苹果,苹果,苹果,甜食,蓝莓,小溪,绿色糖果(绿色糖果蛋白酶)(绿色糖果蛋白酶)(绿色糖浆蛋白酶(绿色糖)(嗜酸菌,乳杆菌,肠球菌,粪肠球菌,双杆菌嗜热杆菌),百里香,卡西亚,茴香,茴香,辣根,杜松,杜松,姜,姜,Yarrow,Rosemary提取物。
纯化抗人 CD69、FITC 抗人 CD69、PE 抗人 CD69、PE/Cyanine5 抗人 CD69、APC 抗人 CD69、APC/Cyanine7 抗人 CD69、PE/Cyanine7 抗人 CD69、Alexa Fluor® 488 抗人 CD69、Alexa Fluor® 647 抗人 CD69、Pacific Blue™ 抗人 CD69、Alexa Fluor® 700 抗人 CD69、Biotin 抗人 CD69、PerCP/Cyanine5.5 抗人 CD69、PerCP 抗人 CD69、Brilliant Violet 421™ 抗人 CD69、Brilliant Violet 785™ 抗人 CD69、Brilliant Violet 650™ 抗人 CD69、Brilliant Violet 510™ 抗人 CD69、 Brilliant Violet 605™ 抗人 CD69、纯化抗人 CD69(Maxpar® Ready)、PE/Dazzle™ 594 抗人 CD69、Brilliant Violet 711™ 抗人 CD69、APC/Fire™ 750 抗人 CD69、TotalSeq™-A0146 抗人 CD69、TotalSeq™-B0146 抗人 CD69、TotalSeq™-C0146 抗人 CD69、Brilliant Violet 750™ 抗人 CD69、KIRAVIA Blue 520™ 抗人 CD69、Spark NIR™ 685 抗人 CD69 抗体、PE/Fire™ 640 抗人 CD69、Spark YG™ 581 抗人 CD69、TotalSeq™-D0146 抗人 CD69、Spark Blue™ 550抗人 CD69、Spark Red™ 718 抗人 CD69、GMP PE 抗人 CD69、PE/Fire™ 810 抗人 CD69、PE/Fire™ 744 抗人 CD69、Spark PLUS UV395™ 抗人 CD69、Spark Blue™ 574 抗人 CD69 (Flexi-Fluor™)
需要快速,特定和可靠的诊断策略来开发用于小分子检测的敏感生物传感器,这可能有助于控制污染和疾病传播。最近,利用了目标诱导的CAS核酸酶的侧支活性[定期插入的短篇小语重复序列(CRISPR)相关的核酸酶]来开发用于检测核酸和小分子的高吞吐量诊断模块。在这里,我们通过开发Bio-Scan V2来扩展CRISPR-CAS系统的诊断能力,这是一个用于检测非核酸小分子靶标的配体反应性CRISPR-CAS平台。生物扫描V2由工程化的配体反应SGRNA(LIGRNA),生物素化死亡CAS9(DCAS9- Biotin),6-羧基流氟氨基酶(FAM) - 标记的扩增子和侧面流量测定(LFA)strips。ligrna仅在sgrna-特异性配体分子的存在下与DCAS9-biotin相互作用以形成核糖核蛋白(RNP)。接下来,将配体诱导的核糖核蛋白暴露于被标记的扩增子进行结合,并检测到配体(小分子)的存在为视觉信号[(DCAS9-biotin) - ligrna-fam-fam标记的DNA-aunp Complection]在侧面效果的测试线上。使用Bio-Scan V2平台,我们能够在短时间内以高达2μm的检测限(LOD)检测模型分子Theophiphline,只需15分钟即可从样本应用到视觉读数。在一起,生物扫描V2分析为茶碱提供了快速,特定和超敏感的检测平台。
对DNA的损害是其与活性氧(ROS)相互作用的结果,尤其是羟基自由基。羟基自由基是由芬顿反应由超氧化物阴离子和过氧化氢产生的,在DNA中产生多种修饰。羟基自由基对脱氧核糖部分的氧化攻击将导致从DNA中释放自由碱,从而产生各种糖修改和简单的可浸泡位点(AP位点)的链断裂。实际上,AP位点是ROS产生的DNA损伤的主要类型之一。醛反应性探针(ARP; N'-氨基甲基甲基苯基羟基羟苯二酰D-生物素)与存在于APETES的开环形式上的醛组有特定的反应(图1)。该反应使检测导致醛组形成的DNA修饰是可能的。用过量的ARP试剂处理后,DNA上的所有AP位点均标有生物素残基。这些生物素标记的AP位点可以使用Avidin-Biotin测定法进行定量,然后用过氧化物酶或碱性磷酸酶结合与Avidin的比色检测。DNA损伤定量套件包含所有必要的解决方案,用于检测每1 x 10
循环!) 50280 EED,FLAG 标签 10 µg -80°C 52170-A 4x HMT 分析缓冲液 2A 4 ml -20°C 要求但未提供的材料或仪器: Anti-FLAG AlphaLISA ® 受体珠,5 mg/ml(PerkinElmer #AL112C) AlphaScreen ® 谷胱甘肽供体珠,5 mg/ml(PerkinElmer #6765300) Optiplate-384(PerkinElmer #6007290) AlphaScreen ® 微孔板读数仪可调节微量移液器和无菌吸头 应用: 用于研究 EZH2 结合试验、筛选抑制剂和选择性分析。禁忌症: DMSO 浓度高于 0.5%。吸收 AlphaScreen ® 信号发射范围 (520-620 nm) 内的光的绿色和蓝色染料,例如台盼蓝。避免使用强效单线态氧猝灭剂,例如叠氮化钠 (NaN 3 ) 或金属离子 (Fe 2+ 、Fe 3+ 、Cu 2+ 、Zn 2+ 和 Ni 2+ )。>1% RPMI 1640 培养基中存在过量生物素和铁会导致信号减弱。缺乏这些成分的 MEM 不会影响 AlphaScreen ® 检测。稳定性:按说明储存,自收到之日起至少可保存一年。参考文献:Kong, X., et al., J. Med. Chem. 2014; 57 :9512。