Balakrishnan教授在IIT Delhi的担任过各种职务,包括飞利浦主席,计算机科学与工程系主管,研究生研究与研究院长,副主任(教职员工(教职员工)和副总监(战略与计划)。 他的研究兴趣是嵌入式系统,辅助技术,EDA和系统级别的设计以及计算机架构。 Balakrishnan从1977 - 1985年开始担任IIT德里的科学家职业生涯,在那里他参与了设计和实施实时DSP系统的设计,并获得了博士学位。经过3年的研究和教学,他于1988年在IIT德里加入CS&E部,担任助理教授。 他于1997年8月在同一部门上任教授职位。 他已经监督了19博士学位。学生,5名MSR学生,215 M.Tech&B.Tech项目,并发表了近140届会议和期刊论文。 他负责多次技术转移和四个初创企业,包括非营利组织。 他是ACM和Inae的家伙。担任过各种职务,包括飞利浦主席,计算机科学与工程系主管,研究生研究与研究院长,副主任(教职员工(教职员工)和副总监(战略与计划)。他的研究兴趣是嵌入式系统,辅助技术,EDA和系统级别的设计以及计算机架构。Balakrishnan从1977 - 1985年开始担任IIT德里的科学家职业生涯,在那里他参与了设计和实施实时DSP系统的设计,并获得了博士学位。经过3年的研究和教学,他于1988年在IIT德里加入CS&E部,担任助理教授。他于1997年8月在同一部门上任教授职位。他已经监督了19博士学位。学生,5名MSR学生,215 M.Tech&B.Tech项目,并发表了近140届会议和期刊论文。他负责多次技术转移和四个初创企业,包括非营利组织。他是ACM和Inae的家伙。
Stephen Philip JACKSON 教授 FRS 剑桥大学 Frederick James Quick 生物学教授、英国癌症研究中心剑桥研究所高级组长。为创新和研究做出贡献
减少建筑外部和场地照明的照明选项 1. 所有户外照明均使用“全遮蔽”灯具。 2. 设计所有户外照明,以最大程度地减少光溢出。 3. 安装定时器或运动传感器照明。 4. 手动关闭非运动激活的灯。 5. 关闭窗帘和百叶窗。 6. 白天进行室内清洁,以减少夜间照明并消除夜间加班工资。全遮蔽灯具示例 7. 参与熄灯计划,在春季和秋季迁徙高峰期(3 月 15 日至 6 月 15 日和 9 月 5 日至 10 月 29 日)从晚上 11 点到早上 6 点关闭不必要的灯,以最大程度地减少鸟类死亡。加入保护鸟类的号召 让您的建筑对鸟类更安全,帮助鸟类种群恢复。一些鸟类安全措施可以降低您的能源成本并且看起来很漂亮。当人们知道建筑变化可以保护鸟类时,他们更有可能欢迎这些变化。今天就开始改变吧!更多信息:
学士学位学生辅修课程................................................................................................................................ IV-102-114 学士学位2+2国际合作课程................................................................................................................... IV-115-174 高级学位课程...................................................................................................................................... IV-175-200
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
由Emerald出版。这是作者接受的手稿:Creative Commons Attribution非商业许可(CC:BOY:NC 4.0)。最终发布的版本(记录的版本)可在线访问:10.1108/AEAT-09-2020-0212。请参考任何适用的发布者使用条款。
104 Baishali Nayak Kamrup(M)19-Sep-72 Gen4。SG-I DR-97工业,商务与公共企业部联合秘书兼阿萨姆邦政府建筑公司有限公司(AGCCL)(ADDL),OSD,新德里阿萨姆邦(ADDL)3/16/2024