阻燃剂通常是为环氧树脂开发的,然后转移到其纤维增强的复合材料中,结果不确定。详细了解这种转移代表了一项关键的科学挑战。这项研究系统地将环氧树脂与玻璃纤维增强复合材料进行了比较,重点是双苯酚A二甘同甲醚与硬化剂二氯二酰胺,火焰粘贴剂三磷酸三磷酸,氨基磷酸氨基磷酸盐和硅烷芳基氨磷酸盐以及内磷酸盐以及内磷酸硅酸盐的硅酸盐。该研究研究了热解(热力计),易燃性(UL 94,限制氧指数)和火力行为(锥热量计)的变化,同时还检查了阻尼药的动作模式和整体火力性能。发现的结果表明,燃料,热性能,熔体流量和保护层的变化显着影响点火,易燃性和火负荷,并且在复合材料内的碳质炭急剧减少,以防止摄入量。这项研究量化了效果,并提供了对从树脂到复合材料的火焰阻燃剂的复杂转移过程的基本科学理解,提供了基本的见解,这些见解对于开发更有效的阻燃材料至关重要。
介电封装材料在太阳能电池领域有着广阔的应用前景,但不尽如人意的光管理能力和相对较差的介电性能限制了它们在光伏和微电子器件中的进一步应用。在此,设计了一种界面融合策略来设计MOF(UiO-66-NH 2)与酸酐封端的酰亚胺低聚物(6FDA-TFMB)的界面,并制备了一种具有增强前向散射和稳健孔隙率的新型MOF簇(UFT)。UFT用作双酚A环氧树脂(DGEBA)的光学和介电改性剂,在较低的UFT含量(0.5–1 wt%)下可以制备具有高透光率(> 80%)、可调雾度(45–58%)和优异介电性能的UFT环氧复合材料,这为太阳能电池中具有高效光管理的介电封装系统提供了最佳设计。此外,UFT环氧复合材料还表现出优异的紫外线阻隔、疏水、热和机械性能。这项工作为共价键介导的纳米填料的合成以及用于能源系统、半导体、微电子等的介电封装材料的雾度和介电性能的调节提供了模板。
The modification of epoxy resins (EP) systems and glass fiber-reinforced epoxy composites (GFRECs) for flame retardancy applications in these industries is critical, owing to the wide range of material characteristics of these resin systems, including highly desirable mechani- cal properties, easy processing, low shrinkage during resin curing, and good adhesion to glass fibers.2加法 - 由于其允许轻巧的能力,GFREC的需求很高,以减少火车,船只或飞机的总体质量,从而提高燃油效率。3,4这项研究是对双酚A(DGEBA)的二甘油乙醚进行的,该研究因其潜在的通用应用从电气零件到航空航天行业而被选为基质。5但是,DGEBA高度易燃,因此需要使用添加剂来增强其阻燃性。6在纯树脂(NR)中的FRS的加工性存在,特别是对于基于溶剂的系统,例如含有反应性阻燃的部分7 - 9和非反应性磷酸化合物,例如9,10-10-dihydro-9-ihydro-9-oxa-10-oxa-10-磷酸磷酸化合物,尤其是针对基于溶剂的系统。10 - 12
属性稳定性LER™-Hb是100%NV液体双酚A型环氧树脂,具有10%修饰,具有低分子量稳定PK™HB。苯氧基(多羟基)树脂是具有出色的热稳定性以及凝聚力和粘合力强度的坚韧和延性热塑性非晶聚合物。苯氧基-Hb结合了标准液体环氧树脂的反应性和苯氧树脂在一个包装中的固化,用于配制复合材料,涂料,墨水和粘合剂。pemoxy ler™-Hb可以用液体环氧树脂进一步修饰,以提供较低水平的含有苯氧树脂的水平。反应性稀释剂,例如糖基醚,以及诸如苄醇和碳酸丙二醇丙酸丙酸丙二醇酯以及其他环氧树脂修饰剂等溶剂也可以添加到pnoxy ler™-HB中。单包环氧树脂配方含有苯氧基LER™-HB和潜在硬化剂(例如Dicyandiamide),当适当地固化在许多底物上时,将产生改善的韧性和粘合强度,包括钢,铝,玻璃和碳纤维,以及诸如尼龙和聚酯(PET)等塑料。
The modification of epoxy resins (EP) systems and glass fiber-reinforced epoxy composites (GFRECs) for flame retardancy applications in these industries is critical, owing to the wide range of material characteristics of these resin systems, including highly desirable mechani- cal properties, easy processing, low shrinkage during resin curing, and good adhesion to glass fibers.2加法 - 由于其允许轻巧的能力,GFREC的需求很高,以减少火车,船只或飞机的总体质量,从而提高燃油效率。3,4这项研究是对双酚A(DGEBA)的二甘油乙醚进行的,该研究因其潜在的通用应用从电气零件到航空航天行业而被选为基质。5但是,DGEBA高度易燃,因此需要使用添加剂来增强其阻燃性。6在纯树脂(NR)中的FRS的加工性存在,特别是对于基于溶剂的系统,例如含有反应性阻燃的部分7 - 9和非反应性磷酸化合物,例如9,10-10-dihydro-9-ihydro-9-oxa-10-oxa-10-磷酸磷酸化合物,尤其是针对基于溶剂的系统。10 - 12
石墨烯已被证明是复合材料的特殊增强添加剂,但其合成的高成本在很大程度上阻止了其在工业规模上的增加。Flash Joule加热提供了一种快速的,批量的方法,用于从煤炭材料(例如冶金可乐(MC))合成石墨烯,进入冶金焦源浅灰灰石墨烯(MCFG)。在这里,这项工作研究了比文献中先前报道的纳米纤维含量含量更高的石墨烯 - 环氧复合材料的特性。具有20至50 wt%的MCFG的复合材料。MCFG的比例为1:2:DGEBA,年轻的模量增加了92%,比例为1:3,硬度增加了140%。 在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。 在MCFG的1:3比例时:DGEBA,韧性增加了496%。 最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。 作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。MCFG的比例为1:2:DGEBA,年轻的模量增加了92%,比例为1:3,硬度增加了140%。在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。 在MCFG的1:3比例时:DGEBA,韧性增加了496%。 最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。 作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。在MCFG的1:3比例时:DGEBA,韧性增加了496%。最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。
摘要:过去几十年来,脑病理的发生率有所增加。更好的诊断(自闭症谱系障碍)和更长的预期寿命(帕金森氏病,阿尔茨海默氏病)部分解释了这一增加,而新兴的数据表明污染物暴露是可能但仍低估的主要脑疾病原因。考虑到大脑实质富含间隙连接,大多数污染物都会抑制其功能;脑部疾病可能是由于长期暴露于污染物而导致的间隙变化改变的结果。在本文中,通过三个互补方面解决了这一假设:(1)脑实质及其功能中的间隙 - 连接性组织和连接性的表达; (2)主要污染物(农药,双苯酚A,邻苯二甲酸盐,重金属,空气颗粒等)的作用)在间隙 - 界面和连接素函数上; (3) a description of the major brain disorders categorized as neurodevelopmental (autism spectrum disorders, attention deficit hyperactivity disorders, epilepsy), neurobehavioral (migraines, major depressive disorders), neurodegenerative (Parkinson's and Alzheimer's diseases) and cancers (glioma), in which both connexin dysfunction and已经描述了污染物的参与。基于这些不同的方面,讨论了产前和产后暴露的污染物抑制剂间隙连接的可能参与。
目前的叙述性评论总结了最新发现,重点是脑衍生的神经营养因子(BDNF)作为青春期神经发育改变的生物标志物,基于暴露于环境化学污染物的健康影响。为此,从PubMed数据库中收集了信息,以及在欧洲的欧洲项目人类生物监测(HBM4EU)中获得的结果,其中在两个级别的生物组织中测量了BDNF:总BDNF蛋白(血清)和BDNF基因DNA DNA甲基化(全血)。所获得的信息如下组织。首先,提出了人类生物监测,效应生物标志物以及当前对人群神经发育改变的现状。第二,BDNF的分泌和作用机制是布里斯的解释。第三,以前使用BDNF作为效应生物标志物的研究在PubMed数据库中咨询并总结。最后,解决和讨论了双酚A(BPA),金属和非持续农药代谢物对BDNF分泌模式的影响及其在行为结果中的调解作用。这些发现是从HBM4EU项目中进行的三项试点研究获得的。发表的发现表明,暴露于某些化学污染物,例如细胞粒子物质(PM),PFA,重金属,双酚和非持久性农药可能会改变健康人群中循环的BDNF水平。因此,BDNF可以用作研究某些化学污染物的发育神经毒性的有价值的生物标志物。
摘要 利用拉曼光谱、差示扫描量热法、温度调制差示扫描量热法、介电光谱和流变学研究了将液体电解质限制在聚合物基质中的影响。聚合物基质由热固化乙氧基化双酚 A 二甲基丙烯酸酯获得,而液体电解质由基于乙基咪唑阳离子 [C 2 HIm] 和双(三氟甲烷磺酰基)酰亚胺 [TFSI] 阴离子的质子离子液体组成,掺杂有 LiTFSI 盐。我们报告称,受限液相表现出以下特征:(i)结晶度明显降低;(ii)弛豫时间分布更宽;(iii)介电强度降低;(iv)在液体到玻璃化转变温度 (T g ) 下协同长度尺度降低;和 (v)局部 T g 相关离子动力学加速。后者表明两个纳米相之间的界面相互作用较弱,而几何限制效应较强,这决定了离子动力学和耦合的结构弛豫,从而使 T g 降低约 4 K。我们还发现,在室温下,结构电解质的离子电导率达到 0.13 mS/cm,比相应的本体电解质低十倍。三种移动离子(Im +、TFSI - 和 Li +)对测量的离子电导率有贡献,从而隐性降低了 Li + 的迁移数。此外,我们报告称,所研究的固体聚合物电解质表现出将机械载荷转移到结构电池中的碳纤维所需的剪切模量。基于这些发现,我们得出结论,优化的
摘要通过拉曼光谱,差异扫描量热法,温度调节的差异扫描量热法,介电光谱和流变学研究了将液体电解质限制在聚合物基质中的影响。聚合物基质是从二甲基二甲基丙烯酸酯的热固化的,而液体电解质由基于乙基 - 咪唑酰胺阳离子[C 2 HIM]和BIS(Trifluoromomethanesulfonyl)的原始离子液体组成,并与Imide [Tfluoromomethanesulfonyl)Imide [Tfsi] Anion annion annion annion,dopsed。我们报告说,受关节的液相具有以下特征:(i)明显降低的结晶度; (ii)更广泛的放松时间分布; (iii)降低介电强度; (iv)在液体到玻璃过渡温度(T g)处的合作长度降低; (v)上速度的局部T G相关离子动力学。The latter is indicative of weak interfacial interactions between the two nanophases and a strong geometrical confinement effect, which dictates both the ion dynamics and the coupled structural relaxation, hence lowering T g by about 4 K. We also find that at room temperature, the ionic conductivity of the structural electrolyte achieves a value of 0.13 mS/cm, one decade lower than the corresponding bulk electrolyte.三个移动离子(IM +,TFSI - 和LI +)有助于测得的离子电导率,隐含地降低了LI +转移数。此外,我们报告了研究的固体聚合物电解质表现出将机械负载转移到结构电池中碳纤维所需的剪切模量。基于这些发现,我们得出结论,优化