模块 II 6L 高频晶体管模型、单级和多级放大器的频率响应、共源共栅放大器。各种操作类别(A、B、AB、C 类等)、反馈拓扑:电压串联、电流串联、电压分流、电流分流、反馈对增益、带宽等的影响,模块 III 6L 振荡器:基本概念回顾、巴克豪森准则、RC 振荡器(相移、维恩电桥等)、LC 振荡器(Hartley、Colpitt、Clapp 等)、多谐振荡器(单稳态、非稳态和双稳态)电流镜:基本拓扑及其变体、VI 特性、输出电阻和最小可持续电压 (VON)、最大可用负载。模块 IV 10L 差分放大器:基本结构和工作原理、差分增益、共模增益、CMRR 和 ICMR 的计算。运算放大器:基本结构和特性、反相和非反相放大器
在这方面,近几年来,人们对基于镧系元素的单分子磁体 (SMM) 进行了深入研究,旨在在分子水平上稳定磁矩并开发更高密度的存储应用。[5,12–19] 镧系元素的缓慢弛豫时间、高磁矩和双稳态基态使其非常适合分子自旋电子学应用。[5,12,13] 镧系元素驱动的 SMM 方法的合理延伸是设计包含镧系元素的周期性网络,这些网络可以充当活性磁信息单元。在过去的几十年里,金属超分子协议已经成为一种设计嵌入金属元素的功能性网状材料的有力策略。[20–22] 这种合成范式也在表面上得到了发展,能够设计二维金属有机设计,主要采用过渡金属和碱金属。[23–25]
众所周知,生态学和经济学方面的运动策略可以使灭绝和持久性之间有所不同。我们为生态人群和街头供应商的动态提供了一个统一的模型,这是许多非正式经济体的重要组成部分。我们分析了该模型,以研究受到强烈合理影响的人群运动的影响。我们从研究均匀差异或无孔边界条件的平衡溶液的存在开始。接下来,我们研究了进化问题,并表明,如果定向运动效应很小,那么解决方案的行为就像经典的反应局部方程和可动的生长模式一样。我们提出了数值模拟,该模拟表明有指示运动可以帮助克服强大的合同效应,并在此方向上提供一些部分分析结果。我们结论是与理想的自由分配建立联系,并分析竞争下发生的情况,发现理想的自由分配策略是当地的邻里入侵者。
空气耦合超声测试(ACU)是非破坏性测试(NDT)的开创性技术。虽然接触测试和流体浸入测试是许多应用中的标准方法,但ACU的采用率正在缓慢发展,尤其是在低超声频率范围内。这一发展的主要原因是很难产生高振幅超声波爆发,其设备足以在实验室环境之外应用。本文介绍了动力超声传感器,以解决这一挑战。这个新颖的空气声源使用Bissable Fuidic开关中声音喷射的流量不稳定,以生成超声波爆发,最高60 kHz,平均峰值压力为320 PA。强大的设计允许在不属于操作流体的不利环境中操作。非接触式跨传输实验是在四种材料上进行的,并与常规传感器的结果进行了比较。在第一次,这表明新型的流体超声传感器为NDT任务提供了合适的声学信号,并且具有进一步在工业应用中实施ACU的潜力。
摘要大西洋子午倾覆(AMOC)的崩溃将对全球降水模式产生重大影响,尤其是在脆弱的热带季风区域。我们在实验中评估了这些影响,这些实验将相同的淡水面包植入具有BISTABL AMOC的四个状态的气候模型。与以前的结果相反,我们发现降水的空间和季节性变化在各个模型之间都非常一致。我们专注于南美季风(SAM),西非季风(WAM),印度夏季季风(ISM)和东亚夏季季风(EASM)。模型始终提出对WAM,ISM和EASM的实质性破坏,其潮湿且较长的干燥季节(-29.07%,-18.76%和-3.78%的集合分别平均年降雨量变化)。模型也同意SAM的变化,这表明与以前的研究相反,降雨总体上升。在南部亚马逊( + 43.79%)中,这些更为明显,伴随着降低季节的长度。在模型中始终如一,我们的结果表明,所有热带季风系统响应AMOC崩溃,对所有热带季风系统进行了稳健而重大的重排。
摘要大西洋子午倾覆(AMOC)的崩溃将对全球降水模式产生重大影响,尤其是在脆弱的热带季风区域。我们在实验中评估了这些影响,这些实验将相同的淡水面包植入具有BISTABL AMOC的四个状态的气候模型。与以前的结果相反,我们发现降水的空间和季节性变化在各个模型之间都非常一致。我们专注于南美季风(SAM),西非季风(WAM),印度夏季季风(ISM)和东亚夏季季风(EASM)。模型始终提出对WAM,ISM和EASM的实质性破坏,其潮湿且较长的干燥季节(-29.07%,-18.76%和-3.78%的集合分别平均年降雨量变化)。模型也同意SAM的变化,这表明与以前的研究相反,降雨总体上升。在南部亚马逊( + 43.79%)中,这些更为明显,伴随着降低季节的长度。在模型中始终如一,我们的结果表明,所有热带季风系统响应AMOC崩溃,对所有热带季风系统进行了稳健而重大的重排。
振动共振扩增通过使用添加性非谐波高频调节来填充弱的低频信号。对综合非线性纳米腔中弱信号增强的实现对于光信号可能具有低功率的纳米光应用引起了极大的兴趣。在这里,我们报告了在热式光子光子晶体彩态机械谐振器中对vi-Brational共振的实验性观察,其放大率高达+16 dB。可以使用膜的机械谐振来有趣的表征,该膜与腔与腔体的强热耦合。相变和双孔电势已被广泛利用,以放大或检测弱信号。1在科学的各种领域观察到的这种一般的物理概念是振动恢复2(VR)现象的核心。作为与众所周知的随机共振的类比,3 VR使用高频(HF)的周期性信号来实现低频(LF)输入信号。理论上已经在不同类型的非线性系统中进行了研究,例如在神经网络中,4在可激发系统5或生物网络中。6
摘要:光学上的多个纳米颗粒已成为研究复杂的基础物理学的平台,例如非平衡现象,量子纠缠和光单词相互作用,可用于以高灵敏度和准确性来感知弱力和扭矩。需要增加复杂性增加的光学诱捕景观,以设计超出单个hon-hon-hon-honnic陷阱之外的悬浮颗粒之间的相互作用。然而,基于空间光调节剂的现有平台用于研究液态颗粒之间的相互作用,效率低,焦点处的不稳定性,光学系统的复杂性以及传感应用的可伸缩性。在这里,我们实验表明,形成具有高数值良好(〜0.9)的两个衍射限制焦点,高效率(31%)可以产生可调的光学潜在孔而没有任何强度弹性。在实验中,通过改变焦点的距离观察到了双势势和双电势孔,并在双电势孔中悬浮了两个纳米颗粒,可用于数小时,这可用于研究悬浮的颗粒的非线性动力学,热动力学,热动力学和光学结合。这将为缩放铺平道路
我们报告了对介观状态下克尔振荡器的驱动耗散动力学的第一原理研究。该状态的特点是具有较大的克尔非线性,这里使用大量约瑟夫森结的非线性动力学电感来实现。结阵列模式的实验测量的非线性共振线形与稳态数值预测存在显著偏差,并且需要时间相关的数值模拟,这表明由于阵列模式之间的巨大交叉克尔效应,系统中存在强烈的测量诱导失相。切换速率的分析和数值计算证实了这一点,因为它显示了慢时间尺度的出现,该尺度比线性衰减速率长得多,并且由双稳态状态下的波动诱导切换时间设定。此外,我们的分析表明,通常的量子激活逃逸处理不足以预测强非线性引起的大频率偏移下的切换速率,因此需要利用全系统 Liouvillian 进行量子处理。根据我们的分析,我们确定了一个通用交叉参数,该参数分别描述了半经典和量子描述的有效性范围。我们的工作表明,强非线性系统中的动态切换效应如何为研究量子到经典的转变提供独特的平台。
页码 1. 简介 3 2. 教师指南 4 2.1 如何管理 PAT 4 2.2 如何评分/评估 PAT 4 2.3 PAT 评估管理计划 5 2.4 PAT 的审核 6 2.5 缺席/不提交任务 6 2.6 模拟 7 2.7 项目 7 2.8 工作成绩表 8 3. 学习者指南 9 3.1 学习者说明 10 3.2 真实性声明 10 4. 模拟 11 4.1 模拟 1:RLC 串联电路 11 4.2 模拟 2:半导体 – JFET 放大器和达林顿对 16 4.3 模拟 3:开关电路 – 741 双稳态多谐振荡器和 555 非稳态多谐振荡器 23 4.4 模拟 4:741 运算放大器施密特触发器和求和放大器电路 31 4.5 模拟 5:科尔皮兹振荡器 36 5. B 部分:设计和制作 40 5.1 设计和制作:第一部分 41 5.2 设计和制作阶段评估:第一部分 43 5.3 设计和制作:第二部分 45 5.4 设计和制作阶段评估:第二部分 46 6. 项目 47 6.1 实践项目 1:5 瓦迷你放大器(便携式扬声器) 47 6.2 实践项目 2(电子产品):交通信号灯 49 6.3 实践项目 3:巡线车 50 7. 结论 51