Raman Kumar Biswas 博士 外国研究员(自 2023 年 10 月起至 2024 年 10 月) 山口大学创新科学技术研究生院,山口市吉田 1677-1 邮政编码;753-0841,日本前。信州大学助理教授,日本长野县松本(硕士和博士学位(日本东北大学))环境科学与灾害管理学院灾害恢复力与工程系教授兼主席(前)孟加拉国帕图阿卡利 Dumki 帕图阿卡利技术大学 - 8602。电子邮件:rkb07_jh@yahoo.com 和 ramanbiswas@pstu.ac.bd 手机:+8801300841136(BD)https://orcid.org/0000-0002-9741-9988 网站:https://www.pstu.ac.bd/teachers/mr.ramankumarbiswas LInkedin:https://www.linkedin.com/in/raman-kumar-biswas-82981597/ https://about.me/ramankumarbiswas?fbclid=IwAR0gySiyPmZTbRQ396XcY8ALZxMhembe T4EYMClOOrIBP5sNEq-0XpyckOY Google Scholar:https://scholar.google.co.jp/citations?user=jFr-pBgAAAAJ&hl=en 网站:https://colorgeo.com/ 教育
校长研究者:A。Biswas教授,共同投资者:A。Mallik教授CSIR资助(2012-2015)(ii)(ii)标题:基于硝酸盐的灯光发射二极管研究,以实现增强绩效绩效首席研究员的研究人员:SERB(SERB(SERB)(2013-2017)(III II)(III II)(III II)(III II)(III II)(III II)(III II)(III II)(III II)(III II)(III II)(III II)(III II)(III II)(III II)(III II)(III II)。从2015年起生效。首席研究员:S。Pandit博士,共同投资者:Meity(IV)资助的A. Biswas教授(IV)标题:有关高移动性IIII IIII IIII III-V,GE和GESN NANO CMOS设备的调查,包括类似/RF的放射效应以及由SERB资助的逻辑应用程序,奖学金/奖项/认可/荣誉:(i)。大学赠款委员会(UGC)研究奖的获得者(2012-2014)(ii)。工程师研究所(FIE)的研究员(III)。生活成员,印度体育社会(IV)。终身会员,电子和电信工程师机构(IETE),印度(V)。终身会员,科学家,工程师和技术人员论坛(FOSET),加尔各答(VI)。成员,IEEE电子设备协会和光子协会(VII)。比利时国际互联网微电子中心(IMEC)的博士研究工作(2007年)。(viii)2019年8月获得了全球经济进步与研究协会的“印度最佳公民金牌奖”。7。在以下期刊中担任审稿人:国际:(a)IEEE Electron。设备lett。(b)IEEE Trans。电子设备(C)IEEE量子电子杂志(D)IEEE Trans。Nanotechnology (e) Superlattices and Microstructures (f) Optics & Laser Technology (g) Microelectronics Reliability (Elsevier) (h) Materials Science in Semiconductor Processing (Elsevier) (i) Microsystem Technologies (Springer) (j) IET Circuits, Devices and Systems (k) Journal of Optical Communications (i) Semiconductor Science and Technology National: (a) IETE研究杂志(b)国防科学杂志8。与国际会议Micro-2018相关的Microsystem Technologies(Springer)期刊编辑。
骨质疏松症是一种代谢性骨病,它影响性别,并且是骨折最常见的原因。骨质疏松疗法主要抑制破骨细胞活性,很少旨在触发新的骨骼生长,从而经常引起严重的全身性不良反应。在生理上,细胞内氧化还原状态取决于促氧化剂,氧化剂(活性氧,ROS)和抗氧化剂的比率。ROS是骨质疏松症中氧化应激的关键因素,因为氧化还原状态的变化负责动态骨重塑和骨再生。ROS代和抗氧化剂系统中的失衡在骨质疏松症,刺激成骨细胞和骨细胞对破骨细胞生成的发病机理中起关键作用。ROS可防止矿化和成骨,从而导致骨质流失的增加。另外,抗氧化剂直接或间接地有助于激活成骨细胞,从而导致分化和矿化,从而减少骨质质外生的发生。由于免疫反应性的不可预测性和报告的不良反应,尽管药物对氧化应激产生了有希望的结果,但针对破骨细胞的临床治疗的治疗受到限制。纳米技术介导的干预措施比再生医学的其他治疗方式获得了显着的优势。纳米疗法方法通过增强其成骨和抗跨性栓塞潜力来影响纳米颗粒的抗氧化特性以触发骨骼修复,从而影响生物相容性,机械性能和骨诱导率。因此,利用纳米疗法来维持成骨细胞和破骨细胞的分化和增殖是典型的。
大多数传统制造技术都基于减材技术。因此,AM 可以被视为一种非传统方法,因为零件将通过在后续工艺中添加材料来生产。AM 中的一般技术是逐层构建零件,其由其原始计算机辅助设计 (CAD) 文件预先确定。当前的 AM 技术主要可分为七个工艺,如图 1 所示。简要介绍每个工艺的相关技术。光聚合槽 (VPP) 的工作原理是固化感光树脂以构建最终的固体几何形状。粉末床熔合 (PBF) 利用最初以床形式熔化的固体颗粒,并通过外部能量源 (激光/电子束) 融合在一起以构建最终的固体几何形状。定向能量沉积 (DED) 技术利用将原料材料导向能量源,同时在多个构建平面中移动能量源和材料进料机构。材料挤出 (ME) 工艺在喷嘴处熔化原料材料,同时将其挤出以生产固体零件。材料喷射 (MJ) 工艺通过使用喷嘴以液滴形式喷射构建材料来工作。液滴将通过特定机制(蒸发/凝结)转化为固体材料。同样,粘合剂喷射 (BJ) 的工作原理是将液体粘合剂材料喷射到粉末床上,从而在粉末颗粒之间产生粘合作用,以构建固体几何形状。与喷射技术相反,直接写入 (DW) 工艺直接以液体或气体的形式释放构建材料,并将其凝固在构建基底上以创建所需的几何形状 [2]。最后,薄板层压 (SL) 的工作原理是将两张预成型或初始形状的薄板固态焊接 [2]。在这里,我们不讨论此类 AM 技术的具体操作原理和深入细节,因为这超出了我们的范围。我们建议读者参考其他地方的参考资料以获取有关 AM 流程的详细信息[3]。
MS 对学习的影响。许多研究都发现了 MS 对学习的益处。在早期的文献综述中,MS 已被揭示为学业成绩最有力的预测指标之一 [30]。一些后续研究并未发现 MS 与学习之间存在很强的关联(例如 [24, 31]),但最近一项针对中小学研究的荟萃分析表明,学习与 MS 之间的相关性在 MS 的特定组成部分、学科、年级以及学习与 MS 的测量方式之间存在显著差异 [29]。例如,在数学、英语/语言艺术、科学和社会研究中,这两个变量的平均 Pearson 积差相关分别为 0.21、0.23、0.26 和 0.34。另一项荟萃分析也重复了这一结果