该立场论文考虑了互补喂养(CF)的不同方面,重点是欧洲健康的婴儿。在审查了当前的知识和实践后,我们提出了这些建议:时间:独家或完整的母乳喂养至少4个月(17周,生命的第5个月开始)以及独家或主要的乳房喂养约6个月(26周,第7个月的开始,第7个月的开始)是一个值得的目标。补充食物(母乳或婴儿配方奶之外的固体和液体),但不应延迟6个月。内容:应为婴儿提供各种浅色和质地的食物,包括苦味绿色蔬菜。持续的母乳喂养与CF一起推荐。全牛的牛奶不应在12个月大之前用作主要饮料。在4个月后的任何时间开始启动CF时,可能会引入过敏性食物。患有花生过敏风险高的婴儿(患有严重湿疹,卵过敏或两者兼有的患者)应在4到11个月之间引入花生。可能会在4到12个月之间引入麸质,但是在麸质引入后的第一周和婴儿期间,应避免大量消耗。所有婴儿均应收到富含铁的CF,包括肉类产品和/或富含铁的食物。不应将糖或盐添加到CF中,应避免果汁或糖甜饮料。纯素食应仅在适当的医疗或饮食监督下使用,父母应承受严重的后果,即未能遵循有关补充饮食的建议。方法:应鼓励父母回应婴儿的饥饿和饱腹运动,并避免进食以舒适或作为回报。
本文对当前复制Openai的O1模型功能的方法进行了批判性检查,特别关注广泛但通常未公开的知识蒸馏技术的使用。虽然我们以前的工作(第1部分(Qin等人,2024))探讨了O1复制的基本技术途径,这项研究揭示了O1的API的简单蒸馏,并结合了监督的微调,可以在复杂的数学推理任务上实现卓越的性能。通过广泛的实验,我们表明,基本模型对数万个样本O1延伸的长期思考链的微调优于美国邀请赛数学考试(AIME),其技术复杂性最少。此外,我们的调查范围超出了数学推理,可以探索跨不同任务的O1延伸模型的概括能力:幻觉,安全性和开放域QA。值得注意的是,尽管仅对数学解决问题的数据进行了培训,但我们的模型证明了对开放式质量QA任务的强烈概括,并且在微调后变得明显降低了对无粘液的影响。我们故意将这一发现公开以促进AI研究中的透明度,并挑战该领域中晦涩的技术主张的当前趋势。这种教育的命令不仅代表了技术考虑因素,而且代表了一个基本的人类使命,它将影响AI创新的未来。1相关资源将在https://github.com/gair-nlp/o1-journey上找到。我们的工作包括:(1)蒸馏过程及其有效性的详细技术阐述,(2)一个全面的基准测试框架,用于评估和分类O1复制尝试,基于其技术透明度和可重复性,(3)对痛苦的限制和潜在的限制,我们对痛苦的限制和潜在的风险进行了关键的讨论:我们的分析:crcial crcial crucial:crucial clucial clucial clucial clucial clucial clucial clucial clucial culminates''''''系统很重要,以第一原则思维为基础的研究人员的发展至关重要。
cichorium intybus var。叶子(witloof)是一种经济上重要的作物,由于许多专门的代谢产物,例如多酚和萜类化合物,其营养价值很高。然而,Witloof植物富含倍半萜烯内酯(SL),这对于植物防御很重要,但也具有苦味的味道,从而限制了工业应用。SL生物合成途径中的特定基因灭活可能会导致SL代谢物含量的变化,并导致苦味改变。在这项研究中,从witloof实施了CRISPR/CAS9基因组编辑工作流量,从聚乙烯乙二醇(PEG)介导的原生质体转染开始,用于CRISPR/CAS9载体递送,然后进行全植物再生和突变分析。原生质体转染效率范围为20%至26%。将靶向植物去饱和酶(CIPDS)基因的第一个外显子的CRISPR/CAS9载体转染到witloof protoplasts中,并导致了CIPDS敲除,从而在23%的再生植物中引起了白化表型。进一步实施我们的方案,SL生物合成途径基因生物氨基烯A合酶(GES),生殖A氧化酶(GAO)和Costunolide合酶(COS)在独立实验中靶向。在基因组靶点基因座的高度多重(Hiplex)扩增子测序中揭示了用CIRSPR/CAS9载体靶向CIGA,CIGAO和CICOS转染的再生植物中的植物突变频率为27.3、42.7和98.3%。这些结果证明了基于转染和witloof protoplasts的再生和随后的Hiplex扩增子测序的基因组编辑的直接工作流。我们观察到整个基因座的不同突变光谱,范围从独立的突变线跨CICOS中的相同 + 1个核苷酸插入到跨独立突变线的CIGAO中的20种突变类型的复杂集。我们的CRISPR/CAS9工作流可以使基因功能研究和更快地纳入精英Witloof系列中,从而促进了Witloof的新型工业应用的发展。
persimmons。科学346,646-650。Atsumi R,Nishihara R,Tarora K等(2019)鉴定了与桑树(Morus alba L.)中与男性性别确定有关的主要遗传标记。Euphytica 215,187。Baird NA,Etter PD,Atwood TS等(2008)使用测序RAD标记的快速SNP发现和遗传映射。PLOS ONE 3,E3376。Butt MS,Nazir A,Sultan TM,SchroënK(2008)Morus Alba L. Nature的功能补品。趋势食品SCI Tech 19,505-512。n n,Zhang C,Qi X等人(2013)桑树莫鲁斯·诺比利斯的基因组序列草稿。nat Commun 4,2445。Jain M,Bansal J,Rajkumar MS,Sharma N,Khurana JP,Khurana P(2022)印度桑树的基因组序列草案(Morus indi-CA)为功能和转化基因组提供了资源。基因组学114,110346。jiao F,Luo R,Dai X等(2020)染色体级参考和种群基因组分析提供了有关驯化桑树(Morus alba)的进化和改善的见解。摩尔植物13,1001-1012。Lieberman-Aiden E,Van Berkum NL,Williams L等(2009)远程相互作用的全面映射揭示了人类基因组的折叠原理。科学326,289-293。Matsumura H,Miyagi N,Taniai N等(2014)使用Rad-Seq分析在苦瓜(Momordica Charantia)中对Gy-Noecy进行映射。PLOS ONE。 9,E87138。 Muhonja L,Yamanouchi H,Yang CC等(2020年),全基因组SNP标志物发现和使用双数量限制性限制的站点相关的DNA示波对桑树品种进行了系统发育分析。PLOS ONE。9,E87138。 Muhonja L,Yamanouchi H,Yang CC等(2020年),全基因组SNP标志物发现和使用双数量限制性限制的站点相关的DNA示波对桑树品种进行了系统发育分析。9,E87138。Muhonja L,Yamanouchi H,Yang CC等(2020年),全基因组SNP标志物发现和使用双数量限制性限制的站点相关的DNA示波对桑树品种进行了系统发育分析。基因726,144162。尼泊尔MP,弗格森CJ,May Finderd MH(2015)繁殖系统和
单宁蛋白是各种植物中存在的有毒多酚,由于其涩味和苦味而导致微生物攻击和植物保护。然而,家禽饮食中的单宁含量很高会导致消化不良,阻碍营养吸收和消化。有趣的是,占据动物瘤胃和胃肠道(GIT)的几种细菌可以耐受单宁蛋白,并通过挥动单肽酶降解它们。该研究旨在隔离和表征来自几个反刍动物标本的潜在降解细菌(TDB)。根据其在最小盐介质(MSM)琼脂上与0.2%单宁酸作为唯一的碳和能量来源,基于其单宁水解能力(MSM)琼脂分离的TDB。使用MSM琼脂平板上的单宁浓度增加,表征了分离株的最大单宁耐受性。此外,在五天的孵育中还评估了单胞酶活性。总共分离了42个单宁降解器,并根据产生的水解区域选择10个TDB进行进一步表征。分子鉴定表明脑杆菌(TDB536),麦尼比杆菌(TDB17),肌动杆菌鼻虫(TDB18、20、23、24、30、35)和葡萄球菌(TDB18、23、23、24、30、35)和葡萄球菌(TDB40)(TDB40)的存在。TDB17,TDB18和TDB24在1.0%时显示出最高的单宁酸耐受性,而TDB36和TDB40的耐受性为0.4%。每个TDB都显示不同的单胞酶活动,在五天的孵化期内,范围从11.56到42.08 U/mL。TDB5和TDB35在第2天的单旋酶活性明显更高(p <0.05)。同时,TDB23和TDB24在第4天显示最高的单胞酶(P <0.05)。在分离株中,粪便中的拟曲霉菌菌株AE6(TDB24)表现出最高的tannase活性(42.08 u/ml),并代表了最佳的TDB。孤立的菌株表明它们可以减少单宁饲料中单宁的抗鼻效应的能力。关键词:杆菌菌株,鉴定,单宁酶,单宁酸,单宁降解细菌
•Oleszkiewicz A,Pozzer A,Williams J,Hummel T(2024)环境空气污染破坏了化学感应敏感性 - 一种全球视角。SCI代表(印刷中)•Plaza-Diaz J,Ruiz-Ojeda FJ,López-Plaza B,Bradimonte-HernándezM,Álvarez-Mercado ai,Arcos-Castellanos L,Feliú-Batlle J,Hummel t,palma-Milla s,GILA a a imira nim a a a a hummella nimimira a imira nimimira nimimira a imirla nimimira nimimira)在营养不良的肿瘤学患者的口腔微生物组上。癌症(在印刷中)•Gudziol H,Guntinas-Lichius O,Hummel T(2024)Eine Chronische rhinische Rhinosinosisis tellte Stellte in Der Corona Pandemie keinen keinen risiko-oder schutzfaktor dar。hno(在印刷中)•Mastinu M,PüschnerA,Gerlach S,Hummel T(2024)味道和口服节感:PTC苦味,性别和年龄的作用。生理行为(在印刷中)•HänselM,Reichmann H,Haehner A,Schmitz-Peiffer H,Schneider H(2024)在自身免疫性脑炎后,根据抗体类型,自身免疫性脑炎后的海马功能障碍。j Neurol(在印刷中)•Drnovsek E,Weitkamp K,Murthy VN,Gurbuz E,Haehner A,Hummel T(2024)健康人和嗅觉功能障碍患者中气味混合物中气味的检测。EUR J NEUROSCI(在印刷中)•对不同鼻内三叉神经受体的激活的反应:行为,外围和中央层的证据•Mai Y,Flechsig J,Warr J,Warr J,Hummel T(2024)对不同内胸腔内胸腔受体的激活的反应:来自行为,蠕动和中心层的不同胸腔内部的证据。前Med(印刷中)其他出版物(章节,同行评审的评论,字母)Behav Brain Res (in press) • Álvarez-Mercado AI, López Plaza B, Plaza-Diaz K, Castellanos LA, Ruiz-Ojeda FJ, Brandimonte- Hernández M, Feliú-Batlle J, Hummel T, Milla SP, Gil A (2024) Regular Consumption of a Food Supplement Containing Miraculin Can Contribute to Reduce营养不良的癌症和味觉障碍患者的炎症和恶病质生物标志物:Clinmir Pilot研究。
(AG 680.1 (0 Nov GL) J JIJ_.MEJUTORJOUS UNIT COMMENDATJON..-由陆军行政长官 d1.reetlon 根据 AU 260-15 授予功绩单位 Cummendatl,rm a 授予以下人员联合王国陆军部队 e:tttptlol:l!ll!J' 的功绩Serdee du.rln 的出色表现:指示的 pericdll。'l'he 引文如下:1.第15tli Qiia,·termater Compan11, 18t aavalr'JI Dlrili ~mlJllll)7以坚定和出色的态度给予了最大程度的密切支持。 凭借其独创性、坚韧不拔的精神,该公司克服了在严寒的冬天运送物资的漫长供应周期所带来的困难。 该公司通过提前预测受援部队的需求,及时将补给品送到适当的地点,满足了受援部队最后变更的要求。 )'"。 该单位以谦逊、忠诚和对职责的忠诚迎接挑战和责任。 在 taco ot mllDf a ffllJII 堪称典范。 第 15 军需官 (Jo,npa,ny, ld Caral'l! Dliria&ll. daplayed如此杰出的忠诚和卓越的表现或异常困难的象牙,使其与众不同,高于其他具有类似指挥系统的单位有助于提高效率、可靠性和成员的决心。 这些微不足道的贡献对 lllt Cualr7 师在战斗中取得的成功做出了贡献,并反映了他们相信自己,即海军陆战队,以及美国军队。 (Geit-1 命令,tr11,B~Hrftn,第八美国军,韩国,! 'I Avqmt 1951.)~mlJllll)7以坚定和出色的态度给予了最大程度的密切支持。凭借其独创性、坚韧不拔的精神,该公司克服了在严寒的冬天运送物资的漫长供应周期所带来的困难。该公司通过提前预测受援部队的需求,及时将补给品送到适当的地点,满足了受援部队最后变更的要求。 )'"。该单位以谦逊、忠诚和对职责的忠诚迎接挑战和责任。在 taco ot mllDf a ffllJII 堪称典范。 第 15 军需官 (Jo,npa,ny, ld Caral'l! Dliria&ll. daplayed如此杰出的忠诚和卓越的表现或异常困难的象牙,使其与众不同,高于其他具有类似指挥系统的单位有助于提高效率、可靠性和成员的决心。 这些微不足道的贡献对 lllt Cualr7 师在战斗中取得的成功做出了贡献,并反映了他们相信自己,即海军陆战队,以及美国军队。 (Geit-1 命令,tr11,B~Hrftn,第八美国军,韩国,! 'I Avqmt 1951.)ffllJII 堪称典范。第 15 军需官 (Jo,npa,ny, ld Caral'l!Dliria&ll.daplayed如此杰出的忠诚和卓越的表现或异常困难的象牙,使其与众不同,高于其他具有类似指挥系统的单位有助于提高效率、可靠性和成员的决心。这些微不足道的贡献对 lllt Cualr7 师在战斗中取得的成功做出了贡献,并反映了他们相信自己,即海军陆战队,以及美国军队。(Geit-1 命令,tr11,B~Hrftn,第八美国军,韩国,!'I Avqmt 1951.)
一、引言作为在大学从事人工智能 (AI) 研究的人,你与企业 AI 研究巨头(如 Googe DeepMind、OpenAI 和 Meta AI)建立了复杂的关系。每当你看到其中一篇论文,它训练某种巨大的神经网络模型来做一些你甚至不确定神经网络是否可以做的事情,毫无疑问地推动了最先进的技术并重新配置了你对可能性的看法,你就会感到矛盾。一方面:这非常令人印象深刻。你推动人工智能向前发展,真是太好了。另一方面:我们怎么可能跟上?作为一名人工智能学者,领导一个实验室,里面有几名博士生和(如果你幸运的话)一些博士后研究员,也许你的实验室里有几十个图形处理单元 (GPU),这种研究根本无法进行。需要明确的是,情况并非总是如此。就在十年前,如果你有一台不错的台式电脑和互联网连接,你就拥有了与最优秀的研究人员竞争所需的一切。开创性的论文通常是由一两个人撰写的,他们在常规工作站上运行所有实验。指出这一点对于过去十年内进入研究领域、需要大量计算资源的人来说尤其有用。如果我们从深度学习 [ 9 ] 中学到了一件事,那就是扩展是有效的。从 ImageNet [ 19 ] 竞赛及其各届获奖者到 ChatGPT、Gato [ 17 ] 以及最近的 GPT-4 [ 1 ],我们已经看到,更多的数据和更多的计算可以产生更好的定量结果,甚至通常是更好的定性结果。(当你读到这篇文章时,那份最近的人工智能里程碑列表可能已经过时了。)当然,学习算法和网络架构也有所改进,但这些改进主要在大规模实验的背景下有用。 (Sutton 谈到了“苦药丸”,指的是当有更多计算可用时,扩展性好的简单方法总能获胜 [ 22 ]。)如今,学术研究人员无法实现这种规模。据我们所知,普通研究人员可用的计算量与保持竞争力所需的计算量之间的差距每年都在扩大。这在很大程度上解释了许多学术界的人工智能研究人员对这些公司的不满。健康
唐纳德·特朗普重返白宫,引发了新一轮关于达成协议结束俄罗斯入侵乌克兰的可能性的猜测。大多数评论员预计谈判将在 2025 年初开始,并忙于讨论乌克兰可能被迫接受的条款以确保和平。然而,实际上,真正的问题是弗拉基米尔·普京是否有意结束入侵。目前几乎没有迹象表明他有此意向。虽然特朗普的和平计划尚未公布,但据信该计划涉及乌克兰的重大领土让步,基辅同意在目前的战争前线停火。作为回报,乌克兰将从美国和其他西方伙伴那里获得某种形式的安全保障。换句话说,普京将被允许保留他的收益,但乌克兰约 80% 的未占领地区将受到保护,以防俄罗斯未来发动任何侵略,并可以自由地进一步融入西方世界。这种形式不太可能让俄罗斯满意。对普京来说,这根本不是一场关于土地的战争。他已经统治着迄今为止世界上最大的国家,并没有真正兴趣获取有限的乌克兰额外领土。相反,他正在追求更为宏大的目标:扭转俄罗斯退出帝国的趋势,并破坏1991年后的全球秩序。为了实现这些目标,普京认为他必须征服乌克兰或摧毁它。在任何情况下,他都不能容忍自由民主的乌克兰继续存在,即使它被剥夺了大约20%的主权土地。普京对乌克兰的痴迷可以追溯到2004年乌克兰橙色革命时期,此后这种痴迷主导了他的整个统治时期。这种执念根源于他对苏联解体所造成的不公的痛恨,以及他担心随着俄罗斯国家的进一步解体,这一悲惨篇章可能重演。普京认为乌克兰独立是俄罗斯在苏联解体后遭受屈辱的表现,并认为乌克兰拥抱民主的欧洲未来对他自己的独裁帝国的完整性构成了生存威胁。多年来,普京一直公开表示反对乌克兰建国。早在 2014 年占领克里米亚开始入侵乌克兰之前,他就已经因坚称乌克兰人实际上是俄罗斯人(“一个民族”)而臭名昭著。同时,在与多位国际领导人的对话中,他攻击乌克兰是一个不应该存在的人造国家。
摘要:咖啡因被描述为可以被细菌降解的必不可少的天然,可行和可销售的嘌呤生物碱。细菌使用咖啡因作为其唯一的碳和氮的能力已在四十多年前阐明。本文使用标准收集的标准技术对微生物脱染过程的潜力进行了回顾,这些技术的最新信息和适当的信息以及来自在线和图书馆来源的数据侧重于细菌咖啡因降解过程:N-脱甲基化和C -8氧化。观察到这两个过程对咖啡因降解更有效,安全,具体,并且在经济上至关重要。各种生物已经在全球范围内分离出来,能够降解咖啡因,例如克雷伯氏菌,犀牛,阿尔卡吉烯,serratia,phanerochaete和bacillus sp。此外,已经确定了细菌咖啡因降解的无数生物技术应用,例如咖啡因粉化环境的生物修复,生物脱落,化学生产和诊断工具。doi:https://dx.doi.org/10.4314/jasem.v27i9.4 Open Access政策:Jasem发表的所有文章都是由AJOL提供支持的PKP的Open-Access文章。这些文章在出版后立即在全球范围内发布。不需要特别的许可才能重用Jasem发表的全部或部分文章,包括板,数字和表。版权策略:©2023作者。本文是根据Creative Commons Attribution 4.0 International(CC-By-4.0)许可证的条款和条件分发的开放式文章。J. Appl。,只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Lukman,K;穆罕默德,a; Shehu,D; Babandi,一个; Yakasai,H。M;易卜拉欣,S。(2023)。微生物签发过程的潜力:审查。SCI。 环境。 管理。 27(9)1915-1924日期:收到:2023年8月9日;修订:2023年9月10日;接受:2023年9月25日发布:2023年9月30日关键字:咖啡因;生物降解;微生物;酶;有效的咖啡因(1、3、7-三甲基黄嘌呤或3、7-二氢-1、3、7-三甲基-1H-2、6-二酮)是嘌呤生物碱的成员。 它是黄氨酸的白色晶体生物碱,其纯形形式无味,苦和无定形,用作药物激活剂,其经验式C 8 H 10 N 4 O 2,分子量为184.2 g/mol的分子量和5小时的半寿命。 该化合物的母链是亲水性的,而其甲基是疏水性的(Kudema等,2023)。 咖啡因作为食物和饮料的来源已经在实践中已经存在了数十年,直到1891年弗里德里希·费迪南德(Friedrich Ferdinand)纯净地隔离了咖啡因(Heishman and Henningfield,2020年)。 咖啡因主要是针对害虫,食草动物和其他生物的防御化学物质SCI。环境。管理。27(9)1915-1924日期:收到:2023年8月9日;修订:2023年9月10日;接受:2023年9月25日发布:2023年9月30日关键字:咖啡因;生物降解;微生物;酶;有效的咖啡因(1、3、7-三甲基黄嘌呤或3、7-二氢-1、3、7-三甲基-1H-2、6-二酮)是嘌呤生物碱的成员。它是黄氨酸的白色晶体生物碱,其纯形形式无味,苦和无定形,用作药物激活剂,其经验式C 8 H 10 N 4 O 2,分子量为184.2 g/mol的分子量和5小时的半寿命。该化合物的母链是亲水性的,而其甲基是疏水性的(Kudema等,2023)。咖啡因作为食物和饮料的来源已经在实践中已经存在了数十年,直到1891年弗里德里希·费迪南德(Friedrich Ferdinand)纯净地隔离了咖啡因(Heishman and Henningfield,2020年)。咖啡因主要是针对害虫,食草动物和其他生物的防御化学物质
