在过去的几十年中,人们如何看待童年的前三年发生了重大转变。从实践的角度来看,这是从一个实践的角度出发的,在这种情况下,婴儿和幼儿音乐课程的迅速扩展是有证据的,也是从研究的角度来看,许多研究人员研究了这个特定年龄段的音乐教学和学习的各个方面(Ilari,2016,2016,2018; Pitt&Hargreaves; Pitt&Hargreaves,2017a; Young,2016年,2016年,2019年; Young&Yarmi&alili; alili;“以前无能的婴儿……曾被能力有能力熟练的能力和对他/她的环境敏感的能力和响应的婴儿所黯然失色”(Young,2016年,第11页)。为婴儿和幼儿提供的音乐课,并由父母陪同的音乐课是许多国家的共同宿舍活动,而参加这些活动的父母的数量仍在增加(Abad&Barrett,2017年)。幼儿时代的父母课程代表“社区音乐教育的独特形式”(Rodriguez,2019年,第96页),孩子和父母都是共同参与者和共同学习者。然而,此类阶级的性质和组成差异很大(Abad&Barrett,2020; Adachi&Trehub,2012; Blackburn,2017; Greenhalgh,2017; Gudmundsdottir&Gudmundsdottir,2010; Young,Young,2016,2016,2018)。父母的角色在将音乐引入孩子的生活以及选择音乐上丰富,愉快和刺激的环境中被认为至关重要,这将培养孩子的音乐潜力(Ang等,2022; McPherson,2009; Rodriguez,2019年)。同时,父母的动力和参与至关重要,因为他们是支持孩子参加并继续音乐的人。但是,什么真正使蹒跚学步的父母认为与孩子一起参加亲子音乐课?
Jim 在 Chivenor 的最后一次服役期间遇到了他未来的妻子 Dot。Dot 被邀请参加营地的舞会,并由共同的朋友介绍认识。他们在当年晚些时候(1972 年 8 月 26 日)结婚。就在他退伍前夕,他们一起向北前往一个房价比北德文郡便宜的地区找工作。他在兰开夏郡布莱克本的一家专门生产安保设备的工厂找到了工作。两年后,他开始感到不安(习惯了皇家空军的生活——经常搬家),并在离他们住处不远的兰开夏郡伯恩利找到了一份工作。近两年后,他工作的公司似乎陷入了困境,他开始寻找其他工作。当共同的朋友 (Ian) 在霍尔顿时,他们拜访了他。听说找工作后,他建议去艾尔斯伯里地区找,因为那里有很多工作机会。吉姆随后被邀请到韦斯科特工作,他在试射部门工作,直到被裁员。由于心脏病发作,他决定找一份文职工作,并在比斯特仓库找到了一份处理士兵文件的工作。当他们决定退休后搬到林肯郡时,他尝试并被调到格兰瑟姆的 TA 做类似的工作。他一直呆在那里直到最后退休。在一次 ARG 会议上,他遇到了一位成员,说服他帮助他喜欢的路演;他还对档案馆感兴趣,主要是编目藏书和数字化《机场评论》的旧副本。吉姆身后留下了他的妻子 Dot——他们没有孩子。
5除了法官格雷迪和卡明斯法官外,Seamon还起诉了两名可能处理上诉的被告:工人赔偿上诉委员会委员托马斯·康明斯(Thomas P.因此,即使据称是由疾病的遗嘱动机或与海滨前雇主的个人联系,所有四名被告都有权获得绝对的司法豁免权。参见Figueroa诉Blackburn,208 F.3d 435,443(3d Cir。2000)。6 Seamon声称,在2008年,在宾夕法尼亚州劳工部工作的律师埃里克·普雷克尼克(Eric Preputnick)或首席律师办公室工作,没有有效地帮助他从工人的赔偿诉讼中获得认证记录的副本。Seamon还列出了Nancy Walker(劳工和工业部长),宾夕法尼亚州劳工和工业部为被告。除了上述推理外,Seamon对Walker和部门的主张失败了,因为(1)Seamon尚未充分指控针对Walker秘书的个人参与或监督责任理论,以及(2)宾夕法尼亚州劳动和工业部的国家部门,该部门是该部门的属于Sovereign Invereign Invereign and diver and diventun and Inder divent and Is divent and Is uf Etive and uf to divest。参见Karns诉Shanahan,879 F.3d 504,519(3d Cir。2018)。7具体而言,这对Seamon的指控是致命的,即(1)詹妮弗·卡拉汉(Jennifer Callahan)与法院演员密谋结束诉讼后停止电子邮件通讯,以及(2)詹姆斯·波西乌斯(James Pocius)和罗斯·科拉扎(Ross Corrazza)(或卡罗萨(Carrozza)(或卡罗萨)与法院演员同意,以错误地重建了认证的记录。
BSA 首席执行官 Victoria Espinel 的证词 | 软件联盟 在参议院商务、科学和运输委员会消费者保护、产品安全和数据安全小组委员会就人工智能透明度的必要性举行的听证会 2023 年 9 月 12 日 下午好,主席 Hickenlooper、排名成员 Blackburn 和小组委员会成员。我叫 Victoria Espinel,是 BSA | 软件联盟的首席执行官。1 BSA 是全球企业软件行业的领先倡导者。2 我们的成员处于开发尖端服务(包括人工智能)的前沿,他们的产品被经济各个领域的企业使用。我赞扬小组委员会召开今天的听证会,并感谢您给我作证的机会。我还赞赏本委员会长期以来对人工智能的关注,包括您为建立国家人工智能计划所做的努力,以及您与 BSA 的联系,以了解我们的公司如何实施美国国家标准与技术研究所今年早些时候发布的人工智能风险管理框架。近六年前,我在本委员会的一次听证会上作证,重点讨论了机器学习和人工智能的基石。3 主席 Cantwell 和参议员 Young 还在当年提出了首批人工智能法案之一。从那时起,我们在 2017 年讨论的基石迅速涌现出来。随着研究人员推出衡量进展的新方法,衡量人工智能如何执行识别和分类图像或理解文本等任务的传统基准正在变得过时。4 正如我当时所说,人工智能是一种基础技术,推动着人们每天使用的产品和服务。它还提出了重要的政策问题,而这些问题是 BSA 工作的核心。我们开展了一项为期一年的项目,与会员公司合作制定了《BSA 构建 AI 信任框架》5,该框架于 2021 年发布,旨在帮助组织减轻 AI 系统中出现意外偏见的可能性。BSA 以大量研究为基础,
扩展服务 ....... Thomas T. Salter,副总裁,邮政信箱 10051 财务事务 ......... H. C. Galloway,副总裁,邮政信箱 10003· 财政援助/奖励 ............ Jess R. Davis,主任,邮政信箱 10042 信息/出版物 ....... Russell DeVillier,主任,邮政信箱 10011 图书馆 ...................... R. B. Thomas,主任,邮政信箱 10021 研究与项目 .............. Jack Hill,主任,邮政信箱 10053 学生活动 ....... · ..... W. James Carter,主任,邮政信箱 10018 学生事务 ........... David L. Bost,副总裁,邮政信箱 10006 学生健康 ........... Ola Saunders 女士,R.N.,邮政信箱信箱 10015 学生宿舍 ........... Tommy D. Paulsel,主任,信箱 10041 教师资格认证 ......... Howard W. Adams,主任,信箱 10034 交通/安全 ................ Gene Carpenter,主任,信箱 10013 学费/费用/开支 ...................... 财务办公室,信箱 10003 测试/退伍军人事务 ......... Joe B. Thrash,主任,信箱 10012 商学院 ................. J. D. Landes,院长,信箱 10059 教育学院 ........... M. L. McLaughlin,院长,信箱 10034 工程学院 ........... Lloyd B. Cherry,院长,信箱 10057 美术/应用艺术学院 ... W. Brock Brentlinger,院长,信箱信箱 10050 文理学院 ......... Preston B. Williams,院长,信箱 1005.8 科学学院 ........... Edwin S. Hayes,院长,信箱 10037 研究生院 ...........
Adams,J。R.,Goldberg,C。S.,Bosworth,W。R.,Rachlow,J。L.,&Waits,L。P.(2011)。 从粪便颗粒DNA的侏儒兔(Brachylagus idahoensis)的快速物种鉴定。 分子生态资源,11(5),808–812。 https://doi.org/10.1111/j.1755-0998.2011.03020.x Auricchio,P。,&Olmos,F。(1999)。 欧洲野兔Lepus Europaeus Pallas 1778(Lagomorpha-Leporidae)的北向范围扩展。 publicaçõesactulsas do Brasil Instituto Pau Brasil,2,1-5。 Bellard,C。,Cassey,P。和Blackburn,T。M.(2016)。 外星物种是最近灭绝的驱动力。 生物学来信,12(2),20150623。https:// doi。 org/10.1098/rsbl.2015.0623 Benson,D.A.,Clark,K. GenBank。 核酸研究,41(D1),D36– D42。 https://doi.org/10.1093/nar/gkt1030 Berry,O.,Sarre,S。D.,Farrington,L。,&Aitken,N。(2007)。 粪便DNA检测入侵物种:塔斯马尼亚州的野狐。 野生动植物研究,34(1),1-7。 https://doi.org/10.1071/wr06082 Blackwell,G。L.(2005)。 另一个世界:新西兰引入的哺乳动物动物区系的构成和结构。 澳大利亚动物学杂志,33(1),108-118。 https://doi.org/10.7882/ az.2005.008 Bonino,N.,Cossíos,D。,&Menegheti,J. (2010)。 欧洲野兔,南美洲的Lepus Europaeus散布。 Folia Zoologica,59(1),9-15。 Broquet,T.,Ménard,N。,&Petit,E。(2007)。 保护遗传学,8,249–260。Adams,J。R.,Goldberg,C。S.,Bosworth,W。R.,Rachlow,J。L.,&Waits,L。P.(2011)。从粪便颗粒DNA的侏儒兔(Brachylagus idahoensis)的快速物种鉴定。分子生态资源,11(5),808–812。https://doi.org/10.1111/j.1755-0998.2011.03020.x Auricchio,P。,&Olmos,F。(1999)。欧洲野兔Lepus Europaeus Pallas 1778(Lagomorpha-Leporidae)的北向范围扩展。publicaçõesactulsas do Brasil Instituto Pau Brasil,2,1-5。Bellard,C。,Cassey,P。和Blackburn,T。M.(2016)。 外星物种是最近灭绝的驱动力。 生物学来信,12(2),20150623。https:// doi。 org/10.1098/rsbl.2015.0623 Benson,D.A.,Clark,K. GenBank。 核酸研究,41(D1),D36– D42。 https://doi.org/10.1093/nar/gkt1030 Berry,O.,Sarre,S。D.,Farrington,L。,&Aitken,N。(2007)。 粪便DNA检测入侵物种:塔斯马尼亚州的野狐。 野生动植物研究,34(1),1-7。 https://doi.org/10.1071/wr06082 Blackwell,G。L.(2005)。 另一个世界:新西兰引入的哺乳动物动物区系的构成和结构。 澳大利亚动物学杂志,33(1),108-118。 https://doi.org/10.7882/ az.2005.008 Bonino,N.,Cossíos,D。,&Menegheti,J. (2010)。 欧洲野兔,南美洲的Lepus Europaeus散布。 Folia Zoologica,59(1),9-15。 Broquet,T.,Ménard,N。,&Petit,E。(2007)。 保护遗传学,8,249–260。Bellard,C。,Cassey,P。和Blackburn,T。M.(2016)。外星物种是最近灭绝的驱动力。生物学来信,12(2),20150623。https:// doi。org/10.1098/rsbl.2015.0623 Benson,D.A.,Clark,K.GenBank。核酸研究,41(D1),D36– D42。https://doi.org/10.1093/nar/gkt1030 Berry,O.,Sarre,S。D.,Farrington,L。,&Aitken,N。(2007)。粪便DNA检测入侵物种:塔斯马尼亚州的野狐。野生动植物研究,34(1),1-7。https://doi.org/10.1071/wr06082 Blackwell,G。L.(2005)。另一个世界:新西兰引入的哺乳动物动物区系的构成和结构。澳大利亚动物学杂志,33(1),108-118。https://doi.org/10.7882/ az.2005.008 Bonino,N.,Cossíos,D。,&Menegheti,J.(2010)。欧洲野兔,南美洲的Lepus Europaeus散布。Folia Zoologica,59(1),9-15。 Broquet,T.,Ménard,N。,&Petit,E。(2007)。 保护遗传学,8,249–260。Folia Zoologica,59(1),9-15。Broquet,T.,Ménard,N。,&Petit,E。(2007)。保护遗传学,8,249–260。非侵入性人口范围:样本源,饮食,碎片长度和微卫星基序对扩增成功和基因分型错误率的影响。https://doi.org/10.1007/ S10592-006-9146-5 Chaves,P.B.,Graeff,V.G.,Lion,M.B.,Oliveira,L.R。,&Eizirik,E.(2012)。DNA条形码符合分子粪便学:用于食肉动物非属性样品的标准化物种分配的短mtDNA术。分子生态资源,12(1),18-35。https:// doi。org/10.1111/j.1755-0998.2011.03056.x Clout,M.N。,&Russell,J.C。(2008)。哺乳动物的入侵生态:一种全球视角。欧洲野生动物研究杂志,35(3),180-184。https://doi.org/10.1071/wr07091 Cuervo,P。F.,Di Cataldo,S.,Fantozzi,M。C.肝氟(fasciola hepatica)自然感染了北巴塔哥尼亚北部引入了欧洲棕色野兔(Lepus Euro-Paeus):表型,患病率和潜在风险。Acta Parasitologica,60(3),536–543。https://doi.org/10.1515/ AP-2015-0076 Da Rosa,C.A.,de Almeida Curi,N.H.巴西的外星陆地哺乳动物:当前状态和管理。生物学入侵,19(7),2101–2123。https://doi.org/10.1007/ S10530-017-1423-3 Davison,A.,Birks,J.D.,Brookes,R.C.,Braithwaite,T.C。关于粪便的起源:用于测量其少量食肉动物的形态学与分子方法。动物学杂志,257(2),141–143。哺乳动物,80(5),497–505。https://doi.org/10.1017/s0952 83690 2000730 de Faria,G。M. M.欧洲野兔(Lepus Europaeus)在巴西的地理分布以及塞拉多和大西洋森林生物群落的新记录。de Sousa E SilvaJúnior,J.,Oliveira,J。A.,Dias,P。A.和Gomes de Oliveira,T。(2005)。更新巴西亚马逊的Tapiti(Sylvilagus Brasiliensis:Lagomorpha,Leporidae)的地理分布和栖息地。哺乳动物,69,245–250。DeMay,S.M.,Becker,P.A.,Eidson,C.A.,Rachlow,J.L.,Johnson,T.R。,&Waits,L.P。(2013年)。 评估濒危侏儒兔的粪便中的DNA降解速率。 分子生态资源,13(4),654–662。 https://doi.org/10.1111/1755-0998.12104DeMay,S.M.,Becker,P.A.,Eidson,C.A.,Rachlow,J.L.,Johnson,T.R。,&Waits,L.P。(2013年)。评估濒危侏儒兔的粪便中的DNA降解速率。分子生态资源,13(4),654–662。https://doi.org/10.1111/1755-0998.12104
47 个单身无家可归者中心(成人) 贝尔法斯特:Centenary House(acc 89)和 Calder Fountain(acc 12) 伯明翰:William Booth Centre(acc 74) 布莱克本:Bramwell House(acc 55) 布拉德福德:The Orchard(acc 42) 布伦特里:New Direction Centre(acc 14) 布里斯托尔:Logos House(acc 93) 卡迪夫:Tŷ Gobaith(acc 70) 考文垂:Harnall(acc 85)、Axholme House(acc 32) 邓迪:Strathmore Lodge(acc 25)、Burnside Mill(acc 20) 爱丁堡:The Pleasance(acc 38) 格拉斯哥:Eva Burrows 1st Stop Project(acc 32)、Hamilton Housing First、Huntershill Court(acc 14)、Wallace of Campsie House(acc 52)、William Hunter House(acc 37)格里姆斯比:布斯生活馆 (acc 35) 亨廷顿:金斯里普顿法院 (acc 36) 伊普斯威奇:林登之家 (acc 38) 利物浦:安·福勒之家 (acc 38)、达比郡之家 (acc 45) 伦敦:坎布里亚之家 (acc 48)、创始人之家 (acc 123)、河滨综合体 (acc 81) 曼彻斯特:发现之家 (acc 10)、奋进之家 (acc 15)、独立之家 (acc 15) 珀斯:斯金纳盖特 (acc 30) 普利茅斯:德文波特之家和锡安之家 (acc 72) 雷丁:谢普顿之家 (acc 20)、威洛之家 (acc 43) 赖德:团契之家 (acc 26)、梅尔维尔街 (acc 7)、卡里斯布鲁克修道院 (acc 14) 圣海伦斯:索尔兹伯里之家 (acc 64) 索尔福德:阿博特旅馆 (acc 20) (由 Saha 提供)谢菲尔德:Charter Row(acc 55)、Lincoln Court(acc 11 个独立单位)斯凯格内斯:Witham Lodge(acc 30)、Rookery Nook(acc 11)南安普敦:The Booth Centre(acc 46)桑德兰:Swan Lodge(acc 65)斯温顿:Booth House(acc 50)沃灵顿:James Lee House(acc 54)
参考•Blackburn MR,Thompson LF。 腺苷脱氨酶缺乏症:从罕见的免疫缺陷的研究中进行的意外抗原。 J immunol。 2012 Feb1; 188(3):933-5。 doi:10.4049/jimmunol.1103519。 没有抽象可用。 引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/22262755)或PubMed Central上的免费文章(https://wwwwwww.ncbi.nlm.nih.nih.nih.gov/pmc/articles/pmc/articles/ppmc3341658/) Slominska E,Bohynikova N,Bernat-Sitarz K,Bernatowska E,Wolska-Kusnierz B,Kalwak K,Kalwak K,Koltan S,Dabrowska A,Gozdzik J,USSOWICZ J,PAC M. PAC M.具有腺苷Deaminase Deaminase Deficiedicrecity ReficienceReciedrelecipedreled Childs in Polor Polor Polor。 前疫苗。 2023 JAN 6; 13:1058623。 doi:10.3389/fimmu.2022.1058623。 Ecollection2022。 引用PubMed(https://ww w.ncbi.nlm.nih.gov/pubmed/36685585)•Grunebaum E,Booth C,Cuvelier GDE,Loves R,Aiuti A,Aiuti A,Kohn DB。 腺苷脱氨酶缺陷的更新管理指南。 J ALLERGY CLIN IMMUNOLPRACT。 2023 Jun; 11(6):1665-1675。 doi:10.1016/j.jaip.2023.01.032。 EPUB 2023 FEB1。 引用PubMed(https://www.ncbi.nlm.nih.gov/pubmed/36736 952)•Hershfield M,Tarrant T.腺苷脱甲酶缺乏症。 2006年10月3日[更新2024 3月7日]。 in:Adam MP,Feldman J,Mirzaa GM,Pagon RA,Wallace SE,Amemiya A,编辑。 genereviews(r)[Internet]。 西雅图(WA):西雅图大学的大学; 1993-2025。 Curr Opin Immunol。 2003年10月; 15(5):571-7。 doi:10。 1016/S0952-7915(03)00104-3。 EUR J Immunol。 2005 JAN; 35(1):25-30。DOI:10.1002/eji.200425738。参考•Blackburn MR,Thompson LF。腺苷脱氨酶缺乏症:从罕见的免疫缺陷的研究中进行的意外抗原。J immunol。 2012 Feb1; 188(3):933-5。 doi:10.4049/jimmunol.1103519。 没有抽象可用。 引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/22262755)或PubMed Central上的免费文章(https://wwwwwww.ncbi.nlm.nih.nih.nih.gov/pmc/articles/pmc/articles/ppmc3341658/) Slominska E,Bohynikova N,Bernat-Sitarz K,Bernatowska E,Wolska-Kusnierz B,Kalwak K,Kalwak K,Koltan S,Dabrowska A,Gozdzik J,USSOWICZ J,PAC M. PAC M.具有腺苷Deaminase Deaminase Deficiedicrecity ReficienceReciedrelecipedreled Childs in Polor Polor Polor。 前疫苗。 2023 JAN 6; 13:1058623。 doi:10.3389/fimmu.2022.1058623。 Ecollection2022。 引用PubMed(https://ww w.ncbi.nlm.nih.gov/pubmed/36685585)•Grunebaum E,Booth C,Cuvelier GDE,Loves R,Aiuti A,Aiuti A,Kohn DB。 腺苷脱氨酶缺陷的更新管理指南。 J ALLERGY CLIN IMMUNOLPRACT。 2023 Jun; 11(6):1665-1675。 doi:10.1016/j.jaip.2023.01.032。 EPUB 2023 FEB1。 引用PubMed(https://www.ncbi.nlm.nih.gov/pubmed/36736 952)•Hershfield M,Tarrant T.腺苷脱甲酶缺乏症。 2006年10月3日[更新2024 3月7日]。 in:Adam MP,Feldman J,Mirzaa GM,Pagon RA,Wallace SE,Amemiya A,编辑。 genereviews(r)[Internet]。 西雅图(WA):西雅图大学的大学; 1993-2025。 Curr Opin Immunol。 2003年10月; 15(5):571-7。 doi:10。 1016/S0952-7915(03)00104-3。 EUR J Immunol。 2005 JAN; 35(1):25-30。DOI:10.1002/eji.200425738。J immunol。2012 Feb1; 188(3):933-5。 doi:10.4049/jimmunol.1103519。没有抽象可用。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/22262755)或PubMed Central上的免费文章(https://wwwwwww.ncbi.nlm.nih.nih.nih.gov/pmc/articles/pmc/articles/ppmc3341658/) Slominska E,Bohynikova N,Bernat-Sitarz K,Bernatowska E,Wolska-Kusnierz B,Kalwak K,Kalwak K,Koltan S,Dabrowska A,Gozdzik J,USSOWICZ J,PAC M. PAC M.具有腺苷Deaminase Deaminase Deficiedicrecity ReficienceReciedrelecipedreled Childs in Polor Polor Polor。前疫苗。2023 JAN 6; 13:1058623。 doi:10.3389/fimmu.2022.1058623。Ecollection2022。引用PubMed(https://ww w.ncbi.nlm.nih.gov/pubmed/36685585)•Grunebaum E,Booth C,Cuvelier GDE,Loves R,Aiuti A,Aiuti A,Kohn DB。腺苷脱氨酶缺陷的更新管理指南。J ALLERGY CLIN IMMUNOLPRACT。2023 Jun; 11(6):1665-1675。 doi:10.1016/j.jaip.2023.01.032。EPUB 2023 FEB1。引用PubMed(https://www.ncbi.nlm.nih.gov/pubmed/36736 952)•Hershfield M,Tarrant T.腺苷脱甲酶缺乏症。2006年10月3日[更新2024 3月7日]。in:Adam MP,Feldman J,Mirzaa GM,Pagon RA,Wallace SE,Amemiya A,编辑。genereviews(r)[Internet]。西雅图(WA):西雅图大学的大学; 1993-2025。 Curr Opin Immunol。 2003年10月; 15(5):571-7。 doi:10。 1016/S0952-7915(03)00104-3。 EUR J Immunol。 2005 JAN; 35(1):25-30。DOI:10.1002/eji.200425738。西雅图(WA):西雅图大学的大学; 1993-2025。Curr Opin Immunol。2003年10月; 15(5):571-7。 doi:10。1016/S0952-7915(03)00104-3。EUR J Immunol。 2005 JAN; 35(1):25-30。DOI:10.1002/eji.200425738。EUR J Immunol。2005 JAN; 35(1):25-30。DOI:10.1002/eji.200425738。2005 JAN; 35(1):25-30。DOI:10.1002/eji.200425738。可从http://www.ncbi.nlm.nih.gov/books/ nbk1483/PubMed上获得(https://www.ncbi.nlm.nih.gov/pubmed/20301656)•Hershfield MS。基因型是腺苷酸酶缺乏症中表型的重要决定因素。引用PubMed(https://pubmed.ncbi.nlm.nih.gov/14499267)•Hershfield MS。对腺苷受体介导的免疫抑制和腺苷在引起与腺苷脱氨酶缺乏相关的免疫缺陷中的作用的新见解。引用于PubMed(https://pubmed.ncbi.nlm.nih.go v/15580654)•Nofech-Mozes Y,Blaser SI,Kobayashi J,Grunebaum E,Grunebaum E,Roifman CM。腺苷脱氨酶缺乏症患者的神经学性稳定性。Pediatr Neurol.2007 9月; 37(3):218-21。 doi:10.1016/j.pediatrneurol.2007.03.011。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/17765813)•nyhan wl。嘌呤和嘧啶代谢的疾病。mol Genet Metab。2005SEP-OCT; 86(1-2):25-33。 doi:10.1016/j.ymgme.2005.07.027。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/16176880)
1世界卫生组织(2023)母乳喂养[在线]。可从:。2 Baby Friendly Intiative(2013)联合国儿童基金会英国婴儿友好计划[在线]。 婴儿友好的计划。 可从:。 3 Nuffield Trust(2022)英格兰的母亲有哪些比例开始并继续母乳喂养? [在线]。 Nuffield Trust。 可从:。 4 McAndrew F&Thompson J. (2012)婴儿喂养调查2010。 健康与社会护理信息中心[在线]。 可从:。 5 oftedal o t。牛奶分泌及其古代起源的演变。 动物:国际动物生物科学杂志。 2012; 6(3):355–368。 [PubMed] [Google Scholar] 6 Martin C R,Ling P R&Blackburn G L.(2016)婴儿喂养的评论:母乳和婴儿配方的关键特征。 营养素,8(5)5月,第1页。 279。 7 Ballard O,Morrow A L.人乳的成分:营养和生物活性因素。 北部的Pediatr Clin。 2013年2月; 60(1):49-74。 doi:10.1016/j.pcl.2012.10.002。 PMID:23178060; PMCID:PMC3586783。 8 Mennella J A,Daniels L M&Reiter A R.(2017)学习在母乳喂养期间喜欢蔬菜:哺乳母亲和婴儿的随机临床试验。 67–76。 9卫生部。2 Baby Friendly Intiative(2013)联合国儿童基金会英国婴儿友好计划[在线]。婴儿友好的计划。可从:。3 Nuffield Trust(2022)英格兰的母亲有哪些比例开始并继续母乳喂养?[在线]。Nuffield Trust。可从:。4 McAndrew F&Thompson J. (2012)婴儿喂养调查2010。 健康与社会护理信息中心[在线]。 可从:。 5 oftedal o t。牛奶分泌及其古代起源的演变。 动物:国际动物生物科学杂志。 2012; 6(3):355–368。 [PubMed] [Google Scholar] 6 Martin C R,Ling P R&Blackburn G L.(2016)婴儿喂养的评论:母乳和婴儿配方的关键特征。 营养素,8(5)5月,第1页。 279。 7 Ballard O,Morrow A L.人乳的成分:营养和生物活性因素。 北部的Pediatr Clin。 2013年2月; 60(1):49-74。 doi:10.1016/j.pcl.2012.10.002。 PMID:23178060; PMCID:PMC3586783。 8 Mennella J A,Daniels L M&Reiter A R.(2017)学习在母乳喂养期间喜欢蔬菜:哺乳母亲和婴儿的随机临床试验。 67–76。 9卫生部。4 McAndrew F&Thompson J.(2012)婴儿喂养调查2010。健康与社会护理信息中心[在线]。可从:。5 oftedal o t。牛奶分泌及其古代起源的演变。动物:国际动物生物科学杂志。2012; 6(3):355–368。 [PubMed] [Google Scholar] 6 Martin C R,Ling P R&Blackburn G L.(2016)婴儿喂养的评论:母乳和婴儿配方的关键特征。 营养素,8(5)5月,第1页。 279。 7 Ballard O,Morrow A L.人乳的成分:营养和生物活性因素。 北部的Pediatr Clin。 2013年2月; 60(1):49-74。 doi:10.1016/j.pcl.2012.10.002。 PMID:23178060; PMCID:PMC3586783。 8 Mennella J A,Daniels L M&Reiter A R.(2017)学习在母乳喂养期间喜欢蔬菜:哺乳母亲和婴儿的随机临床试验。 67–76。 9卫生部。2012; 6(3):355–368。[PubMed] [Google Scholar] 6 Martin C R,Ling P R&Blackburn G L.(2016)婴儿喂养的评论:母乳和婴儿配方的关键特征。营养素,8(5)5月,第1页。 279。7 Ballard O,Morrow A L.人乳的成分:营养和生物活性因素。 北部的Pediatr Clin。 2013年2月; 60(1):49-74。 doi:10.1016/j.pcl.2012.10.002。 PMID:23178060; PMCID:PMC3586783。 8 Mennella J A,Daniels L M&Reiter A R.(2017)学习在母乳喂养期间喜欢蔬菜:哺乳母亲和婴儿的随机临床试验。 67–76。 9卫生部。7 Ballard O,Morrow A L.人乳的成分:营养和生物活性因素。北部的Pediatr Clin。2013年2月; 60(1):49-74。 doi:10.1016/j.pcl.2012.10.002。PMID:23178060; PMCID:PMC3586783。8 Mennella J A,Daniels L M&Reiter A R.(2017)学习在母乳喂养期间喜欢蔬菜:哺乳母亲和婴儿的随机临床试验。67–76。9卫生部。9卫生部。《美国临床营养杂志》,第106(1)期英国食品能量和养分的饮食参考值。报告第41号。食品政策医学方面委员会饮食参考价值小组的报告。hmso,伦敦。1991 10 Lauritzen L,Brambilla P,Mazzocchi A,HarsløfLB,Ciappolino V,Agostoni C. DHA在脑发育和功能中的影响。营养。2016 JAN 4; 8(1):6。 doi:10.3390/nu8010006。 PMID:26742060; PMCID:PMC4728620。 11WicińskiM. Sawicka E,GęBalskiJ,Kubiak K&Malinowski B. (2020)人乳寡糖:健康益处,婴儿公式中的潜在应用和药理学。 营养,12(1)1月,第1页。 266。 12 Hodgkinson A,Wall C,Wang W,Szeto I M,Ye W&Day L.(2022)Nucleotides:对其在母乳中的浓度进行更新的评论。 营养研究,3月99日,pp。 13–24。 13 Cosgrove M.(1998)围产期和婴儿营养。 核苷酸。 营养(加利福尼亚州洛杉矶县伯班克),14(10)10月14日,pp。 748–751。2016 JAN 4; 8(1):6。 doi:10.3390/nu8010006。PMID:26742060; PMCID:PMC4728620。11WicińskiM. Sawicka E,GęBalskiJ,Kubiak K&Malinowski B.(2020)人乳寡糖:健康益处,婴儿公式中的潜在应用和药理学。营养,12(1)1月,第1页。 266。12 Hodgkinson A,Wall C,Wang W,Szeto I M,Ye W&Day L.(2022)Nucleotides:对其在母乳中的浓度进行更新的评论。营养研究,3月99日,pp。13–24。13 Cosgrove M.(1998)围产期和婴儿营养。核苷酸。营养(加利福尼亚州洛杉矶县伯班克),14(10)10月14日,pp。748–751。
[本文原德文版于2021年8月2日发表于德国国家日报《世界报》经济版AI专栏“Aus dem Maschinenraum der KI”,第10页。10.][使用www.DeepL.com/Translator(免费版)翻译 - 欧洲制造的AI技术,请参阅https://en.wikipedia.org/wiki/DeepL_Translator,随后由作者进行润色和修改。]来自AI引擎室的消息 生日快乐,AI!人工智能迎来 65 岁生日——是时候祝贺了 作者:Kristian Kersting 人工智能,简称 AI,正在迎来 65 岁生日:1956 年 6 月至 8 月,美国科学家 John McCarthy、Marvin Minsky、Nathaniel Rochester 和 Claude Shannon 在新罕布什尔州达特茅斯学院组织了“达特茅斯人工智能夏季研究项目”,这被认为是 AI 的诞生。这四个美国人的前提仍然是当今所有 AI 研究的基础:智能的每个方面,而不仅仅是学习能力,都可以被精确地描述,以便计算机可以模拟它。早在 1956 年,人们就开始讨论计算机是否能借助人工神经网络达到大脑的性能。如今,学习这样的网络(现在具有让人联想到大脑三维连通性的分层结构,因此称为深度学习)已带来许多突破 — 最近的一个突破是生物学的一个核心问题:预测蛋白质的三维折叠。对于 2009 年诺贝尔生理学或医学奖获得者伊丽莎白·布莱克本来说,这是革命性的,因为它将使我们能够更深入地了解基因组序列。回到克劳德·香农。他也被认为是数字时代之父,但他抵制了有关他创立的信息理论的炒作(及其后果)。在 1956 年的一篇题为“潮流”的文章中,他将炒作比作一辆被热情但并非总是知识渊博的追随者包围和陪伴的潮流。只要巧妙地将文章中的一些关键词替换掉,例如将“信息理论”替换为“深度学习”,将“控制论”替换为“数字化”,将“解码器”替换为“人工神经网络”,就会发现他的批评非常及时,Krisha Mehta、Charles Frye 和 Toby Walsh 已经注意到了这一点。我真的很惊讶,他在 1956 年的经历与我今天的经历如此吻合。这是我的结果:深度学习在过去几年里已经成为一种科学潮流。它最初是计算机视觉工程师的一种技术工具,在大众和科学媒体中都得到了极大的宣传。部分原因是它与计算机、控制论和自动化等时尚领域的联系;部分原因是它的主题新颖。因此,它的重要性可能已经超出了它的实际成就。我们许多不同领域的科学家同行们被这种宣传和科学分析的新途径所吸引,正在将这些想法应用于他们自己的问题。它被应用于生物学、心理学、语言学、基础物理学、经济学、组织理论等许多领域
