Pfurtscheller,1992)。erd在特定频率do -main和特定的脑电图(EEG)通道位置(特征)对应于执行的运动图像(MI)任务的可变程度,该任务用R平方值表示(Blankertz等,2007; Graimann et al。,2002; Lotte et; Lotte等,2007,2007年)。典型的SMR-BCI任务是将光标从计算机屏幕的左边缘转向光标到出现在计算机屏幕右边缘的顶部(例如SMR ERD)或底部(例如SMR ERS)的目标区域的,从而通过MI插入二进制控制。在健康的参与体中证明了成功的SMR-BCI对照(Blankertz等,2010; Hammer等,2012; Jeunet等,2016; Zhang等,2015)和杏仁性侧向硬化症(ALS)或其他神经疾病的人或其他神经疾病
在脑部计算机界面(BCI)领域的研究主要是在受控的实验室环境中进行的。要将BCIS转移到现实世界和日常生活情况下,将研究从这些受控环境中带出来并进入更现实的情景至关重要。最近,在教室,汽车或逼真的拖船模拟器中记录了各种研究(Blankertz等,2010; Brouwer等,2017; Ko等,2017; Miklody等,2017)。移动BCIS甚至允许参与者在录制期间自由移动(Lotte等,2009; Castermans等,2011; De Vos等,2014; Wriessnegger等,2017;VonLühmann等,2017,2019)。其他研究是通过瘫痪,锁定或完全锁定的使用者或参与者从中风中恢复的(Neuper等,2003; Ang等,2011; Leeb等,2013;Höhne等,2014; Hwang等,2017; Han等,2019; Han。,2019; Lugo等。但是,到目前为止,还没有进行BCI研究,该研究系统地研究了分心。,我们在五种类型的干扰下记录了基于运动图像的BCI研究(n = 16),该研究模仿了极光外环境,并且没有添加分心的控制任务。次要任务包括观看一段闪烁的视频,搜索特定号码的房间,听新闻,闭上眼睛和氛围刺激。我们希望通过以多种干扰条件发布此BCI数据集来进一步做出贡献。本报告提供了研究的设计和实验设置的摘要。(2016)。已经发布了许多BCI数据集,例如,在BNCI Horizon 2020 Initiative 1,4 BCI竞赛对研究社区的影响很大(Sajda等,2003; Blankertz等,2004,2006; Blankertz et al。 2018)。我们还在所有次级任务的标准分类管道和功率谱上显示了与事件相关的同步和对异步的结果组级别的结果。除了数据集2外,用于分析的代码也可以公开可用3,并且可以在Brandl等人中找到更高级的分析。
许多工作环境,特别是在安全关键环境中,需要人类操作员持续而持续的关注。这些任务的单调性经常导致一时注意力不集中,从而导致错误并造成严重后果。脑机接口 (BCI) 提供了对用户心理状态的强大洞察力和额外的信息渠道,可由能够动态适应用户情绪或状态的设备利用 [Blankertz 等人,2010]。一些研究已经证明,在使用中央凹刺激的注意力任务中,大脑活动携带着预示行为反应结果的信息 [Eichele 等人,2010;O'Connell 等人,2009]。本研究旨在获得隐蔽警觉注意力任务中的类似结果,该任务更接近模拟现实世界环境,其中罕见的关键刺激可能出现在视野的边缘。
BCI 系统是一种可以提取大脑活动并处理脑信号的设备,使计算机设备能够完成特定目的,例如通信或控制假肢。更常用的系统涉及运动想象(例如,Hétu等人,2013;Kober等人,2019;Su等人,2020;Jin等人,2021;Milanés-Hermosilla等人,2021;Mattioli等人,2022)、交流(Blankertz等人, 2011;Jahangiri 等人,2019;Panachakel 和 G,2021)、人脸识别(Zhang 等人,2012;Cai 等人,2013;Kaufmann 等人,2013)或 P300 检测(Pires 等人,2011;Azinfar 等人,2013)盖伊等人;等人,2018 年;Shan 等人,2018 年;Mussabayeva 等人,2021 年;Rathi 等人,2021 年;Leoni 等人,2022 年)。只有少数研究同时使用 BCI 系统识别反映不同类型心理内容的多个 ERP 信号,例如音乐(Zhang 等人,2012 年)、面孔(Cai 等人,2013 年;Li 等人,2020 年)或视觉对象(Pohlmeyer 等人,2011 年;Wang 等人,2012 年)。事实上,自大约 40 年前发现 ERP 电位以来(Ritter 等人,1982 年),它已被证明是一种非常可靠的标记
在脑电图 (EEG) 记录中,不同受试者之间和同一受试者内随时间推移都存在普遍且难以捉摸的受试者间和受试者内变异性 ( Saha and Baumert , 2020 )。受试者间变异性可归因于年龄、性别和生活习惯等因素,这些因素与大脑地形和电生理有关 ( Seghier et al. , 2004 ; Herzfeld and Shadmehr , 2014 ; Wu et al. , 2014 ; Seghier and Price , 2018 ; Antonakakis et al. , 2020 )。受试者内部的变异性可以解释为心理和生理的变化,例如疲劳、放松和注意力(Smith 等人,2005 年;Meyer 等人,2013 年;Nishimoto 等人,2020 年;Trinh 等人,2021 年;Hu 等人,2022 年)。受试者间和受试者内部的变异性对基于 EEG 的脑机接口 (BCI) 领域构成了重大挑战(Ray 等人,2015 年;Saha 等人,2017 年;Lee 等人,2019 年;Chikara 和 Ko,2020 年;Wei 等人,2021 年;Huang 等人,2022 年)。通过检测感觉运动节律 (SMR) 中的事件相关去同步/同步 (ERD/ERS),基于运动想象的 BCI (MI-BCI) 已被提出用于神经康复应用,范围从运动障碍、严重肌肉疾病和瘫痪患者到肢体运动恢复 (Wolpaw and Wolpaw, 2012; Mane et al., 2020)。然而,来自某个受试者的训练有素的 BCI 模型不能直接应用于另一个受试者。此外,先前的研究表明 BCI 效率低下的问题,有 10% 到 50% 的用户无法操作 MI-BCI 系统 (Vidaurre and Blankertz, 2010; Liu et al., 2020)。即使是对同一受试者,BCI 系统的性能也会随着时间的推移而下降。受试者间和受试者内变异性的存在导致传统机器学习泛化能力的下降,从而限制了MI-BCI的实用化应用(Ahn and Jun,2015;Saha等,2017)。在传统机器学习框架下,训练集和测试集需要独立同分布(IID)(Duda and Hart,2006)。然而,受试者间和受试者内的变异性使得IID条件假设不再成立。通过放宽IID假设的限制要求,迁移学习被认为是一种有效的方法,可以提高模型对受试者间和受试者内变异性的可重用性和泛化能力(Jayaram等,2016;Pan,2020)。已经提出了一系列方法将知识从源域迁移到目标域。不变表示的目的是寻找跨不同会话或主题的不变学习模型,例如正则化公共空间模式 (CSP) 和不变 CSP (Blankertz 等,2007;Cheng 等,2017;Xu 等,2019)。随着深度学习技术的发展,领域自适应方法已经提出并几乎完全主导了 BCI 应用领域(Li 等人,2010 年;Liu 等人,2012 年;Samek 等人,2013 年;Fukunaga,2013 年;Dagaev 等人,2017 年;Azab 等人,2019 年;Hong 等人,2021 年)。一些端到端优势和更强的特征学习能力受到了越来越多的关注(Autthasan 等人,2021 年)。虽然受试者间和受试者内的变异性对实际应用的挑战已逐渐被注意到,并且迁移学习可以在一定程度上弥补性能下降,但对受试者间和受试者内变异性的理解仍然有限。大多数研究人员将受试者间和受试者内的变异性视为类似类型的问题( Jayaram 等人,2016 年)。虽然受试者间和受试者内的变异性都会导致
非侵入性脑部计算机界面是一种令人兴奋的新技术,为大脑和计算机系统之间的通信提供了渠道。它们可以用作通信设备(Chaudhary等,2016; Brumberg et al。,2018),康复系统(Cervera等,2018),娱乐设备(Gürkök等,2017),以及其他广泛的应用程序(Finke等,2009,2009; Makeig et al。,2011)。非侵入性BCIS的研究正在迅速发展,并且是一个高度多学科的领域,其中包括神经科学家,工程师,心理学家,计算机科学家和临床医生。持续开发BCI技术取决于这些领域的每个领域的进步,它们可以单独和集体地有助于改善BCI系统的所有方面,包括信号获取,处理,分类,分类和用户界面设计。BCI系统的许多单个部分通常是在预先存在的数据集上首次开发和评估。但是,只有少数高质量的公开数据集可以在这些数据集上进行新的系统,工具和技术的评估和比较。例如,公开可用的BCI竞争数据集(Sajda等,2003; Blankertz等,2004,2006)为BCI研究人员提供了一套出色的资源,并已广泛使用许多研究人员来开发和评估新的信号处理和分类方法(Arvaneh等人,2013年,2013年; Ghaemi等,2017年; Sakhavi等人,2018年; Zanini等人,2018年;换句话说,BCI研究的可靠性和可重复性因缺乏和稀疏性数据集而阻碍。然而,相对较小的大小和此类数据集的数量会引入过度拟合的风险,以通过这些数据集开发和评估的方法。本期特刊提供了一系列在世界各地BCI研究实验室的开发,培训和评估期间记录的公开生理数据集的描述。收集到的数据集由通过多种模式记录的信号组成,包括但不限于脑电图(EEG),功能近近红外光谱(FNIRS),肌电图(EMG),心电图学(ECG)(ECG)(ECG),钙含量皮肤反应(GSR),皮肤温度测量率和体内的数据,次要次数和体内。许多数据集都包含具有这些信号模态的两个或多个组合的多模态记录。描述了来自各种不同BCI范式的数据。这些包括基于新型事件相关电位(ERP)和基于稳态的视觉诱发电位(SSVEP)BCIS
诺亚·托马森 诺克斯维尔韦伯学校 摘要 视频游戏的输入方式多种多样,包括键盘、鼠标、控制器和许多其他方法。脑电图 (EEG) 是一种戴在头上的帽子,可以检测大脑中的电信号。这种设备正被视为传统控制器的替代品或补充。EEG 可以与计算机一起使用,成为脑机接口 (BCI),在游戏和来自大脑的直接信号之间建立反馈回路。BCI 越来越多地用于视频游戏,无论是用于娱乐还是严肃目的。在本文中,我们回顾了 BCI 的组成部分,并评估了其在视频游戏中的总体使用状态。我们描述了 EEG、要测量的输入、常见的预处理技术和不同的机器学习算法。我们评估了游戏制作方面,讨论了制作的各种游戏。我们在论文的最后列出了当前不同学科的局限性,并指出了可能需要进一步创新才能使该技术普及的领域。简介 传统视频游戏通常使用键盘和鼠标输入来控制游戏中的特定动作。其他输入包括游戏手柄和手持控制器,甚至可能是方向盘。所有这些都需要用手来移动或按下组件。过去几十年来,人们一直在尝试一种新颖的输入方法,即使用来自用户大脑的原始电信号。该过程包括使用特定方法解码这些信号,以完全绕过身体的附属物。这实际上使用户能够用他们的思想来控制游戏。由于输入方法不需要用户移动,因此它也可以用作传统方法的补充,而不是替代。虽然这项技术有点新,并且有许多局限性,但这是一个很有前途的领域,能够展示大脑信息传输和解码的状态。本文介绍了该领域的现状和术语,以及可以进一步研究的内容。测量方法该过程的很大一部分是首先选择用于测量的仪器。脑机接口 (BCI) 的正式定义是一种试图建立从大脑到外部计算机的直接通信渠道的系统,绕过诸如周围神经系统之类的自然通信渠道 (Blankertz 等人,2007)。它在大脑和外界之间创建实时循环交互。BCI 的输出会影响用户的意图,进而影响构成输出的大脑信号的解码 (Wolpaw,2013)。该系统的一部分是一种通过检测神经动作电位的极小电脉冲来捕捉神经活动的设备。其中大部分都包含在大脑周围的直接区域内,但一小部分可以穿透到头皮(Kuzovkin,2011)。这带来了检测这些微小电脉冲的不同方式,通过可以戴在头上或通过手术植入的设备,产生了不同类型的 BCI,具有不同程度的优点和缺点。皮层下或皮层
大脑计算机界面是人类计算机交互的一种新方法,它提供了大脑与计算机或其他外部设备之间的直接通信联系(McFarland和Wolpaw,2011年)。事件相关电位(ERP)是代表皮质加工的独特相位的大脑表面的电活动的时间固定量度(Patel和Azzam,2005),它是与某人对某些刺激或特定事件的反应有关的内源性电位。ERP的典型示例是N200和P300。P300(Sutton等人,1967年)是一个正面峰值事件后约300毫秒显示的正峰波形,是ERP研究最多,使用最广泛,最突出的成分之一(David etal。,2020年; Kirasirova等。,2020)。P300分类检测是P300-BCI研究的重点,快速准确的识别对于改善p300-BCI的性能至关重要(Huang等人。,2022)。P300通常表现出低信噪比(SNR)(Zhang等人,2022)。为了突出其时间锁定的组件并最大程度地减少背景噪声,P300-BCI要求从多个试验中收集,汇总和平均数据以获得可靠的输出(Liu等人。,2018年),这是耗时且有效的。因此,在单审判中正确对p300进行分类是一个巨大的挑战。到目前为止,单个试验P300分类算法的准确性记录如下:Krusienski使用逐步线性判别分析(SWLDA)的平均分类精度约为35%。使用贝叶斯线性判别分析(BLDA)的平均分类准确性(BLDA)约为60%。Blankertz应用了收缩线性判别分析(SKLDA),并达到平均分类精度约为70%。张张通过时空判别分析(STDA),并达到平均分类准确性约为61%。Kaper开发的支持向量机(SVM)算法的平均分类精度达到64.56%。以及XIAO提出的判别规范模式匹配(DCPM)的价值为71.23%,表明DCPM在单验P300分类中的其他传统方法显着超过了其他较小的训练样本中的其他传统方法(Xu等人。,2018,2021; Xiao等。,2019a,b,2021; Wang等。,2020)。ma等。(2021)提出了一个基于胶囊网络的模型,该模型提高了单审P300的检测准确性,但是,由于大小的增加,计算变得复杂。Zhang等。 (2022)用Xdawn填写数据,以提高脑电图信号的信噪比,但是空间过滤方法需要在特征提取后手动选择显着特征,然后对其进行分类。 这是特定因素的高度特殊性;但是,该算法通常很复杂,其精度受特征选择的影响(Zhang等人 ,2022)。 深度学习是端到端的学习,具有简单的结构,可以移植到具有高分类精度的各种任务,但对示例数据的要求很高。 ,2020年),脑电图数据融合(Panwar等人Zhang等。(2022)用Xdawn填写数据,以提高脑电图信号的信噪比,但是空间过滤方法需要在特征提取后手动选择显着特征,然后对其进行分类。这是特定因素的高度特殊性;但是,该算法通常很复杂,其精度受特征选择的影响(Zhang等人,2022)。深度学习是端到端的学习,具有简单的结构,可以移植到具有高分类精度的各种任务,但对示例数据的要求很高。,2020年),脑电图数据融合(Panwar等人如今,深度学习方法在基于脑电图的目标检测技术方面取得了巨大进展(Li等人,2021),基于此,一些学者提出了其他用于P300分类的方法,例如转移学习(Wei等人。,2020),incep a-eegnet(Xu等人,2022),组合分类器(Yu等人。,2021),主成分分析(PCA)(Li等人,2020)等目前,Daniela使用了CNN(Cecotti和