摘要:ACFA 2020(柔性飞机主动控制)是欧盟委员会第七研究框架计划资助的合作研究项目。该项目涉及 2020 年飞机配置(如翼身融合 (BWB) 飞机)的创新主动控制概念。ACFA 的主要目标是设计一种新型超高效 450 座 BWB 型飞机,以及为此类飞机提供强大的自适应多通道控制架构。新设计的控制器的目标是雄心勃勃地改善乘坐舒适度和操控品质,以及减轻 BWB 型飞机的负荷。根据实现的负荷减少,可以调整 450 座飞机的结构,目标是雄心勃勃地减轻重量,从而进一步提高燃油效率。主动控制要求分别影响控制面的设计过程和整体飞机设计。因此,传统的飞机设计流程必须适应新的要求。本文描述的飞机设计框架已在 ACFA BWB 飞机的开发中证明了其效率。在一年的时间内,在多个领域要求的约束下开发了机身。本文介绍了 BWB 飞机设计活动的过程和结果,为详细概念分析以及多输入多输出控制架构的研究奠定了基础。
根据联邦航空管理局的研究,仅美国航空公司每年就燃烧 162 亿加仑的航空燃料,导致美国空气污染的 3% 以上,航空业贡献了全球空气污染的 1% 以上。与其他污染源相比,这些数字可能看起来微不足道,但航空业仅占世界贸易量的 0.5%,而全球能源消耗量为 2.2%。目前电池和电动机的进步并不能在不久的将来取代燃气涡轮发动机,特别是对于远程飞机而言。本文介绍了一种 BWB 飞机的概念设计,该飞机可载客 160 人,航程 9200 公里,巡航速度为 0.77 马赫数,可通过 FAR 25 认证。设计非常规配置的方法包括传统的飞机设计方法和新颖的方法。在任何航程方程中,升阻比都起着重要作用。对于 BWB 飞机来说,这个比率相当高,而且随着发动机效率的提高,每位乘客每公里的燃油消耗量可以大幅降低。与具有类似载客量和任务特征的传统飞机相比,BWB 飞机的一体式设计提供了较低的空重。
摘要 — 过去几十年空中交通量的增加及其预测对实现碳中和增长目标构成了关键挑战。为了实现这一社会目标,需要采用具有低环境影响的新技术的颠覆性航空运输飞机概念。这种未来的飞行器依赖于系统、学科和组件之间的各种相互作用。因此,本博士研究的重点是开发一种方法,该方法致力于使用创新推进概念探索和评估非常规配置的性能。要考虑的用例是混合翼身与分布式电力推进的概念级优化,这是一个很有前途的概念,结合了高气动性能和电力推进的优势。
与 2020 年相比,开发性金融机构提供的优惠金额更高(2019 年为 14 亿美元,2021 年为 19 亿美元)。开发性金融机构的杠杆金额保持不变(2020 年和 2021 年均为 53 亿美元),而私营部门的杠杆融资大幅增加(2020 年为 30 亿美元,2021 年为 46 亿美元)。公共部门的杠杆金额从 2020 年的 12 亿美元略有下降,至 2021 年的 9 亿美元,但优惠金额的增加和私营部门的杠杆融资完全抵消了这一下降。杠杆金额因地区、行业和主题而异,如以下第 12 节所述。
本文研究了二元混合电极的电化学行为,其中包括等效量的锂离子电池活性材料,即lini 0.5 MN 0.3 CO 0.3 CO 0.2 O 0.2 O 2(NMC),LIMN 2 O 4(LMO),寿命0.35 MN 0.65 MN 0.65 PO 4(LFMP)和Lifepo 4(Lifepo 4(life testro controtro)和lif intres intros introse intros intros introse contring intring intring intring intring in actring in acting and a) Operando X射线衍射(XRD)。所有可能的50:50混合组合进行了研究,并在连续和脉冲电荷和放电过程中遵循混合组分之间的电流分布。结果表明,单个材料的电压曲线对当前分布的显着影响,每个组件的有效C率在整个电荷状态(SOC)中变化。脉冲解耦电化学测试揭示了在放松过程中混合成分之间的电荷交换,展示了“缓冲效果”,该效应也已通过时间分辨的操作数XRD实验在实际混合物中精心考虑考虑束诱导的效果的真实混合物中捕获。发现电荷转移的方向性和大小取决于组件和细胞SOC的性质,也受温度的影响。这些依赖性可以合理化,考虑到混合组成部分的热力学(电压谱)和反应动力学。这些发现有助于促进对混合电极内部动力学的理解,这是对合理设计的有价值的见解,以满足锂离子电池的多样化运营需求。
混合元素粉末是金属添加剂粉末中合金粉末的新兴替代品,这是由于可与其生产的各种合金范围及其不开发新颖的原料所节省的成本所致。在这项研究中,通过在BE TI-185粉末上进行SLM,在通过Infra-Red成像和通过同步X射线衍射跟踪表面温度的同时,研究了SLM期间的原位合金和并发微观结构演变。然后,我们进行了mortem电子显微镜(反向散射电子成像,能量分散X射线光谱和电子反向散射衍射),以进一步深入了解微观结构的发展。我们表明,尽管放热混合有助于熔化过程,但激光熔化仅在合金和未混合区域的混合物中产生。全合金和一致的微观结构仅通过在热影响区域的进一步循环才能实现。2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
关于本教师指南 ................................................................................................................................................................ 1 教育设计 ...................................................................................................................................................................... 1 成为讲师的步骤 ...................................................................................................................................................... 1 教师的角色 ...................................................................................................................................................................... 1 查找或列出课程 ...................................................................................................................................................... 2 教师与讲师候选人比例 ...................................................................................................................................... 2 教室要求和课程材料 ............................................................................................................................................. 2 致讲师候选人的课前信样本 ............................................................................................................................. 3 使用课程计划 ............................................................................................................................................................. 3 了解图标 ............................................................................................................................................................. 4 第 2 部分:课程准备 ............................................................................................................................................................. 5
• 确定成为 AHA 讲师的先决条件 • 描述计划管理手册 (PAM) 的可用性 • 描述 AHA 讲师的核心能力 • 描述 AHA 教学周期的 5 个步骤:准备、教学、测试和补救、结束和保持最新 • 确定 AHA 讲师可用的资源 • 描述如何使用特定学科的 AHA 讲师材料:讲师手册、课程计划、课程视频和技能测试清单 • 确定学生完成课程时可用的特定学科课程格式 • 描述特定学科的课程完成要求 • 描述课程中 AHA 讲师可用的特定学科灵活性选项 • 描述如何保持 AHA 讲师身份的要求 • 描述有效的 AHA 讲师反馈和补救技术 • 展示使用技能测试清单进行技能测试的管理 • 展示预先汇报和结构化汇报技能 • 描述如何促进练习和测试站
混纺是一种混合过程,其中将两种或多种不同的纤维组合成所需的百分比。在纱线纺纱系统中,可以混合不同的成分、长度、直径或颜色以产生混纺纱。在该系统中,各种纤维组合成均质质量,然后纺成短纤维纱。通常,黄麻和棉纤维混合在一起制成黄麻棉混纺纱。黄麻的多样化用途是混纺纱的一种方式。使用 30%:40%:30% 的比例来制造黄麻棉粘胶混纺纱。棉纺生产线中的转子架生产黄麻棉粘胶混纺纱和 100% 纯棉纱。测量了黄麻棉粘胶混纺纱和 100% 纯棉纱的物理特性,如支数、纱线 Lea 强度和 CSP。其中,黄麻-棉-粘胶混纺纱与纯棉纱的平均支数相近,分别为6.0和5.89。但纯棉纱和黄麻-棉-粘胶混纺纱的纱线强度和CSP分别为318.6磅、208磅和1876、1246,相差较大。混纺纱的CV%、SD、PMD与纯棉纱一致。本研究首次将粘胶与黄麻、棉进行混纺,生产出黄麻-棉-粘胶混纺纱,并对两种纱线的物理性能进行了比较。
摘要 本研究旨在研究在管道运行的紧急情况下,氢气混合天然气对线路能量的影响。通过电解从可再生能源中生产氢气,然后将其注入天然气网络,为电网调节和能量存储提供了灵活性。在这种情况下,了解氢气百分比含量对于输电网络运营商至关重要,因为氢气百分比含量可以在氢气-天然气混合物运输过程中安全地影响长期钢制管道服务中的材料。本文首先回顾了现有管道系统中可以与天然气混合的氢气的允许含量,然后研究了压缩机启动和关闭两种情况下对线路能量的影响。在后一种情况下,使用非稳定气体流动模型。为了避免解域中的虚假振荡,在数值近似中使用了通量限制器。使用 GERG-2008 状态方程来计算物理性质。本研究选取已运行多年的树状高压天然气管网作为案例研究,研究结果对管道运营商评估供气安全性具有重要意义。
