摘要。细胞外聚合物物质(EPS)是许多上层和本元环境中重要的有机碳储层。EP的产生与植物和皮科普兰顿的生长密切相关。EPS通过阳离子的结合并用作最小值的成核位点在碳酸盐沉淀中起关键作用。水柱中碳酸钙沉淀的大规模发作(Whiting事件)已与蓝细菌开花有关,包括Synechococococococococococococococcus spp。触发这些降水事件的机制仍在争论中。我们提出的是,在指数和固定生长阶段产生的蓝细菌EPS在白色的形成中起着至关重要的作用。这项研究的目的是研究2个月蓝细菌生长的EPS产生,模仿开花。在Syechococcus spp的不同生长阶段检查了EP的产生和特征。使用各种技术,例如傅立叶变换红外(FT-IR)表格,以及比色和十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳(SDS-PAGE)测定法。我们通过体外降水实验进一步评估了EPS在碳酸盐预紧次的预言中的潜在作用。在早期和晚期阶段产生的EPS含有比指数阶段产生的EPS中的更大的负电荷组。con,固定相EPS的较高Ca 2 +结合的依次导致形成了较大量的较小
背景:鞭毛藻是水生生物的人,在全球海洋中特别广泛。有些人负责有毒的花朵,而另一些人生活在共生关系中,既可以作为珊瑚中的共生式共生体,要么是感染其他生物和动物的寄生虫。鞭毛菌具有非典型的大基因组(〜3至250 GB),其基因组织和基因表达模式与密切相关的Apicomplexan寄生虫截然不同。在这里,我们测序并分析了两种早期差异和同时发生的寄生虫鞭毛蛋白变形虫菌株的基因组,以阐明这种非典型基因组特征,鞭毛藻酸酯的进化和宿主专业化的出现。结果:我们使用Illumina配对的短读和牛津纳米孔技术(ONT)的长读测序方法的组合,对两种变形虫菌株(A25和A120)进行了测序,组装和注释的高质量基因组(A25和A120)。我们发现了少数可转座元素,以及短的内含子和基因间区域以及有限的基因家族,共同促进了大变形虫基因组的紧凑性,这一特征可能与寄生虫有关。大多数变形虫蛋白(A25的63.7%和A120的59.3%)没有功能分配,但我们发现许多与Dinophyceae共享的直系同源物。我们的分析表明,尽管种间蛋白质序列相似性低,但两种基因组之间的单向簇编码和高水平的同步保护的基因趋势很强。
构建搜索现在将关键词组合在一起以创建“搜索语句”。使用这些技巧可以帮助您。 1.使用布尔运算符 AND、OR、NOT AND – 缩小搜索范围 OR – 扩大搜索范围 NOT – 从搜索中排除术语 2. 进行短语搜索:使用引号“ ”或括号 ( ) 将短语放在一起:例如:“第二次世界大战”、加拿大 AND(气候变化或全球变暖)。 3. 使用截断符来包含拼写和单词形式的变化。用星号 * 代替单词结尾:例如,child* 将搜索 child、children、childrens 搜索 1:__________________AND/OR________________________AND/OR_______________________ 搜索 2:__________________AND/OR________________________AND/OR_______________________ 搜索 3:_________________________________AND/OR________________________AND/OR_______________________ 搜索 4:________________________________________________________________________________ 搜索 5:_________________________________________________________________________________ 搜索 6:__________________________________________________________________________________ 优化您的搜索 1.Gale 数据库/电子书允许通过全文、同行评审、出版物标题、文献类型和主题来优化搜索。 2.尝试在不同的数据库中搜索。 3.使用数据库中的高级搜索功能。 4.尝试进行主题搜索,而不是关键字搜索。关键字搜索范围广泛,是一个良好的开端。主题搜索使用数据库指定的主题标题,并提供更具体的搜索。结果可以高度相关。选择数据库 1. 可以从 St. Benedict's Online Resources 或直接通过 https://www.galepages.com/?loc=camb70211 访问学校数据库 (家庭访问需要密码。请咨询您的老师或学校图书管理员。) 2. 在 Gale Online Resources 页面上,选择相关学科领域数据库: 综合研究:Academic OneFile、Gale General OneFile 背景信息:Gale In Context、Science In Context、Canada In Context、Gale eBooks 有争议的主题:Opposing Viewpoints In Context 科学:Gale Interactive Science、General Science Collection、Gale In Context:Science 文献:Blooms Literature、Gale Literature Resource Center、Lit Finder、The Shakespeare Collection 历史:Gale OneFile 世界历史、Canada In-Context、Gale OneFile 美国历史 改编自杰斐逊社区技术学院和墨尔本大学制作的讲义
蓝细菌是内陆水域藻类开花的主要因素,威胁生态系统功能和用水的用途,尤其是在产生毒素的菌株占主导地位时。在这里,我们检查了140个高光谱(HS)图像,这些代表的五个代表,可能是毒素产生和盛开的属属微囊藻,浮游生物,浮游生物,阿法尼兹瘤,菊花菌,菊花菌和dolichospermum,以确定可见和近距离散布的潜在的(以/nirir的范围)的潜在。培养物在各种光和营养条件下生长,以诱导各种色素和光谱变异性,模仿自然环境中可能发现的变化。重要的是,我们假设了一个简化的方案,其中所有光谱变异性均来自蓝细菌。在整个蓝细菌生命周期中,获得了多个HS图像以及叶绿素A和植物蛋白酶的提取。图像,并使用K-均值算法提取来自感兴趣区域的平均光谱。使用七种方法对光谱数据进行了处理,以随后整合到随机森林模型中,其性能通过训练,验证和测试集的不同指标进行了评估。使用第一或第二个衍生物以及光谱平滑的成功分类率接近90%,并确定VIS和NIR中的重要波长。微囊孢子和Chrysosporum是达到最高精度(> 95%)的属,其次是浮游生物(79%),最后是Dolichospermum和Aphanizomenon(> 50%)。HS图像对
摘要Aphanizomenon flos-aquae(AFA)是一种革兰氏阴性氮固定的淡水淡水丝状蓝细菌,具有丰富的营养概况,可通过食品和药物管理局和欧洲食品和安全当局批准人类消费。它具有较高的蛋白质含量(60-70%),并含有许多维生素,矿物质和微量元素,以及具有营养特性的几种高价值化合物,例如C-磷酸和β-苯基乙胺。AFA干生物量的500-1000吨目前是从季节性在美国俄勒冈州克拉马斯湖季节性出现的自然花朵收获的,并在全球范围内作为营养补充剂分发。由于AFA增长对环境条件的依赖性和微囊藻毒素毒素的潜在污染,野生收获的要求和不可靠性威胁到生物质供应的可用性并限制了商业扩张。在这篇综述中,我们建议在开放池或封闭的光生反应器中培养AFA培养,以获得可靠的Unialgal生物量生产以解决供应问题并增强AFA作为特定高价值副产品的原料。此外,我们通过使用耕种和野生收获的协同组合来探索最大化总体产量和季节性鲁棒性的潜在策略。受控的AFA培养还将促进使用遗传操纵来产生具有改善商业应用的定制菌株,例如增加氰基杆菌的氮固定速率,以提高其作为生物肥料的价值。最终,实现AFA的未开发的生物技术潜力,需要更好地了解其基本生物学,实验室和大规模培养的强大方法以及AFA特异性基因工程技术的发展。
1。渔业和海洋资源对于粮食安全,生计以及SIDS的社会和经济增长非常重要; 2。气候变化和海洋酸化是对小岛屿发展中国家的生存威胁,SID感受到了沿海和海洋资源和捕鱼社区影响的全部力量;尽管对问题做出了最小的贡献。3。关键的海洋生态系统,例如珊瑚礁和繁殖,在热带地区的商业重要海洋物种的丰度和分布受到温暖和更酸性水的负面影响,并改变了洋流。4。藻华(包括萨尔加斯)以及其他有害藻类(包括气候变化,酸化以及随之而来的海洋生态系统变化)的增加。5。如果该部门要重新制定并实施重大缓解和适应措施以提高弹性并确保沿海社区以及海洋生态系统和渔业的可持续性,那么获得融资至关重要。6。,我们所有人都在寻找解决加速气候变化带来的挑战的解决方案,尽管有些是外部和难以解决的。7。融资可持续渔业管理是通过基础设施更新来抵御气候变化影响的SID的关键; 8。现在紧急的优先事项是高级,气候智能,包括可再生能源和风险信息的预警系统的部署。9。10。SIDS必须使用NDC合作伙伴关系作为确保构建所需资源的关键机会SIDS要求每年287亿美元来实施其NDC,这体现了每个国家以减少民族排放并适应气候变化的影响的努力。
摘要:地静止的扩展观测或Geoxo是NOAA的未来地静止卫星星座,该星座将于2030年代初发射,并将其运行到2050年代。鉴于对地球系统的变化,技术的改进以及卫星数据使用者的不断扩展的需求,Geoxo将通过添加三个新仪器和一个新的航天器来扩展NOAA当前的观察套件。改进的成像仪和闪电映射器的版本将再次放置在东西方卫星上,在那里他们将监视严重的风暴,热带气旋,火灾和其他危害。它们将通过一种旨在检测有害藻华,浮游植物,叶绿素和其他成分的海洋色仪器加入。第三个地静止航天器将放置在美国中心,并将携带高光谱红外发音器,一种大气组成工具,并可能是合作伙伴有效载荷。来自音响器的辐射将被吸收到数值天气预测模型中,以改善预测,并且衍生的温度和水蒸气垂直曲线的检索将使预报员可以检测和跟踪增强不稳定性的区域。从新的大气组成仪器中检索诸如二氧化氮和臭氧的污染物以及从气候监测之外的空气质量监测,预测和警告,还将用于改善空气质量监测,预测和警告。完成后,Geoxo星座将有助于卫星的国际“地理环”,该卫星将用于全球天气,海洋,气候和空气质量监测。这个革命性的新地静止卫星星座将为不断变化的地球系统提供关键的观察。
摘要:佛罗里达州面临着越来越多的挑战,这是由于经常性和新颖的有害藻华(HABS)所引起的。关键挑战包括预测,跟踪,管理和缓解有害的花朵。最初的回应是1997年创建了佛罗里达有害藻华特遣队(HABTF),该工作组于1999年根据佛罗里达州法规被指控,以“确定研究和监测优先级,控制和缓解策略,并向佛罗里达鱼类和野生动物保护委员会(FWC)提出建议,并提出建议。响应于2017年 - 2019年的Karenia Brevis Bloom,HABTF被重新召集。添加了全州框架的其他组成部分,包括FWC红潮研究中心(CRTR),由新法规资助的缓解和技术开发计划以及蓝绿色藻类工作组。并发且经常互动的工作导致了25个从HABTF建议开发的项目,并通过HABTF赠款和CRTR资助;佛罗里达州HAB观察网络的研讨会和HABTF会议将HAB专家汇总为州法规概述的专家;以及针对沟通,公共卫生和经理响应的工作组成立。当前HABTF的产品包括提供建议并总结进度的共识文件(2020年,2021年和准备中),这是佛罗里达州HABS公共卫生响应的最新资源指南,对盛开的机构响应,对盛开的响应,增强的现场观察和模型的增强,并通过社会科学研究和库creations的社会发展和风险工具引导的,并进行了许多公共成员的沟通和风险。HABTF继续评估现有方法和知识,在我们的努力和理解中查明差距,并通过评估其利益和可行性来填补这些差距的优先策略和行动组合。演讲者:佛罗里达州鱼类和野生动物保护委员会,鱼类和野生动物研究所| gwyneth.abbott@myfwc.com演讲者生物:梅根·雅培(Meghan Abbott)是佛罗里达鱼类和野生动物保护委员会(FWC),Fish and Wildlife Research Institute的有害Algal Bloom(HAB)研究小组的副研究科学家。她拥有生物学和数学科学学士学位,是公共卫生大师,在环境科学和HAB中特别关注,以及图书馆和信息科学的硕士。梅根(Meghan)协调了佛罗里达有害藻类布鲁姆(Algal Bloom)工作队的公共卫生技术小组(2006-2009),目前自2019年重新激活以来就协调了佛罗里达有害的藻华特遣队。她领导了各种协作计划的发展,以实现对工作队的优先建议。通过FWC红潮研究中心,这包括针对Karenia Brevis Red Tide监测和研究,教育和外展以及管理和公共卫生响应的全州合作计划的要素。合着者:唐纳德·安德森(Donald Anderson),艾米丽·库利(Emily Cooley),杜安·德·弗雷斯(Duane de Freese),码头多奇(Quay Dortch),凯瑟琳·哈伯德(Katherine Hubbard),查尔斯·雅各比(Charles Jacoby),巴布·柯克帕特里克(Barb Kirkpatrick),雪莉·拉金(Sherry Larkin),米歇尔·史密斯(Michelle Smith),朗达·史密斯(Michelle Smith),朗达·沃特金斯(Rhonda Watkins),戴维·沃特(David whitkins)理事会/IRL国家河口计划,国家海洋与大气管理局,佛罗里达鱼类和野生动物保护委员会鱼类和野生动物研究所,佛罗里达州洪水枢纽应用研究与创新,墨西哥沿岸海洋海洋观察系统,佛罗里达大学/佛罗里达大学海洋学系,佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州农业和消费服务部,佛罗里达州农业和消费服务部,佛罗里达州佛罗里达州农业和消费服务部。
地球被恰当地描述为一个沿海星球( Martínez 等人,2007 )。沿海区被定义为距离海岸不到 100 公里且海拔不到 10 米的陆地,是地球表面水体与陆地之间的线性界面,长度超过 160 万公里。地球表面的这一重要特征非常长,可以绕赤道 402 圈( Martínez 等人,2007 )或延伸到月球并返回两圈。虽然沿海海洋占全球海洋表面面积的 8%( Cracknell,1999 ),但它占海洋有机物总量的 14-30%( Gattuso 等人,1998 )。沿海海洋(指海岸与大陆架边缘之间的海洋区域)和相关的沿海环境处于气候变暖的前沿。二氧化碳浓度不断上升,导致大气变暖,目前年均浓度接近 420 ppm(https://www.esrl.noaa.gov),导致海平面上升,并可能导致沿海水文、洋流和天气发生变化。冰川和冰盖融化导致海平面上升,有可能导致沿海社区被淹没(Vitousek 等人,2017 年)以及沿海侵蚀加剧(Zhang 等人,2004 年),而海水变暖预计将加剧热带气旋的严重程度(Sobel 等人,2016 年)。有记录显示,随着气候变暖趋势导致热带物种向极地迁移( Pinsky 等人,2013 ),珊瑚礁发生大规模白化( Heron 等人,2017 ),海洋生态系统生物多样性遭到破坏。除了气候因素外,不断增长的沿海人口也对他们生存和繁衍所需的海洋服务施加了压力。目前,全球 27% 的人口生活在沿海地区( Kummu 等人,2016 )。预计到本世纪中叶,这一人口将增加近一倍( Neumann 等人,2015 ),这将增加不断变化的沿海环境的压力。过去 100 年里,人类对沿海资源的依赖和开发导致沿海和内陆水生栖息地发生越来越剧烈的变化( Turpie 等人,2017 )。目前,全球人均海产品消费量占所有动物蛋白的 6%,是国际贸易量最大的食品商品(Smith 等人,2010 年)。水产养殖在消费海产品供应中所占的比例越来越大。随着人口增长和气候变化,这一趋势预计将持续下去(Wells 等人,2015 年)。此外,沿海水生栖息地的压力导致了许多对人类和水生生态系统有害的浮游植物物种的出现(Anderson 等人,2002 年)。例如,水产养殖产生的废弃营养物会助长有害藻华(HAB)的形成。有毒的赤潮和无毒或入侵性浮游植物物种的过度生长会破坏生态系统的功能,并影响食物和水资源。这些变化主要源于人为的富营养化(Glibert 等人,2005 年;Anderson,2009 年)。过量的藻类会降低光线的穿透力,对水柱和底栖生物的光合作用产生负面影响。一些藻华的生长速度可能快于自然食草动物的消耗速度。
由于气候变化和富营养化,主要有毒的淡水蓝细菌的花朵正在加剧,并且很可能会定居河口,从而影响底栖生物和养殖养殖,重强调主要的生态,健康,健康,健康和经济风险。在自然环境中,微囊藻形成大型粘液菌落,会影响蓝细菌和嵌入细菌洞穴的发展。然而,盐度增加对微囊藻的天然菌落的命运知之甚少。在这项研究中,我们监测了一个微囊藻的命运,沿法国淡水盐梯度沿着鲜花的不同阶段沿着法国淡水盐梯度沿着微生物组的命运。我们证明了蓝细菌基因型组成的变化,在特定代谢产物(毒素和兼容溶质)的产生中以及响应盐度升高的异育细菌结构的变化。尤其是M.铜绿和Wesenbergii M.基于微囊蛋白基因丰度,蓝细菌在其河口转移期间变得更具毒性,但没有选择特定的微囊蛋白变体。沿连续体发生了兼容溶质的增加,海藻糖和甜菜碱积累。盐度大多是异养细菌群落,沿着连续体的丰富性和多样性增加。与粘液相关的相关分数中的核心微生物组高度丰富,表明微囊肿及其微生物组之间存在很强的相互作用,并且可能保护粘膜对渗透冲击的作用。这些结果强调了更好地确定微囊菌落与它们的微生物组之间的相互作用,这可能是其广泛成功并适应各种环境条件的关键。