主动睡眠 (AS) 为同步皮质和皮质下结构内及之间的神经活动提供了独特的发展环境。在一周大的大鼠中,肌阵挛性抽搐的感觉反馈(AS 的特征性相位运动活动)会促进海马体和红核(中脑运动结构)中相干的 θ 振荡 (4-8 Hz)。抽搐的感觉反馈还会以纺锤波爆发的形式触发感觉运动皮质中的节律活动,纺锤波爆发是由 θ、α/β(8-20 Hz)和 β2(20-30 Hz)频段中的节律成分组成的短暂振荡事件。在这里,我们想知道这些纺锤波爆发成分中的一个或多个是否从感觉运动皮质传递到海马体。通过同时记录 8 日龄大鼠的胡须桶状皮质和背侧海马,我们发现 AS(而非其他行为状态)会促进皮质-海马相干性,尤其是在 beta2 波段。通过切断眶下神经以阻止胡须抽搐的感觉反馈传递,AS 期间的皮质-海马 beta2 相干性显著降低。这些结果证明了感觉输入(尤其是在 AS 期间)对于协调这两个正在发育的前脑结构之间的节律性活动的必要性。
词汇表 主动睡眠 REM 睡眠的几个替代名称之一,另外还有异相睡眠、不同步睡眠等。尽管有些人限制将其用于发育中的动物,但也有人更喜欢将其更普遍地用作对这种状态的更客观的描述。 晚成性 出生时处于相对未成熟状态的动物。这样的后代通常出生时没有毛皮或绒毛,眼睛被封住,相对不动,依靠母亲的照料来获得营养、温暖和保护。狗、老鼠和鹰就是晚成性物种的例子。 肌阵挛性抽搐 四肢和其他附属物(例如,胡须、眼睛)的短暂、抽搐性运动,主要发生在 REM 睡眠期间。它们是由骨骼肌激活产生的。 早熟性 出生时处于相对成熟状态的动物。此类后代通常出生时身上有毛皮或绒毛,眼睛睁开,相对灵活,不像晚成性物种那样依赖母体提供营养、温暖和保护。绵羊、马和鸭子就是早熟物种的例子。安静睡眠 非快速眼动睡眠的几种替代名称之一,还有慢波睡眠、同步睡眠等。虽然有些人将其限制用于发育中的动物,但其他人更喜欢将其更广泛地用作对这种状态的更客观的描述。
疫苗接种时间表。乙肝基金会 | 巴鲁克·S·布隆伯格研究所。(2022 年 9 月)。检索日期:2023 年 3 月 3 日,来自 https://www.hepb.org/prevention-and-diagnosis/vaccination/guidelines-2/ 乙肝疫苗。乙肝基金会 | 巴鲁克·S·布隆伯格研究所。(nd)。检索日期:2023 年 3 月 3 日,来自 https://www.hepb.org/prevention-and-diagnosis/vaccination/ 咨询专家:乙肝疫苗。Immunize.org(2023 年 8 月)。检索日期:2023 年 9 月 29 日,来自 https://www.immunize.org/askexperts/experts_hepb.asp。
09:00 – 09:10 欢迎 Timothy Block 博士,乙肝基金会和 Baruch S. Blumberg 研究所联合创始人兼前任主席 09:10 – 09:30 HBV、HDV 和 HCC 的优先研究问题 - 2023 年研讨会报告 Chari Cohen,乙肝基金会主席;Baruch S. Blumberg 研究所教授 Thomas Tu,Westmead 研究所副教授;澳大利亚乙肝之声和 HepBCommunity.org 联合创始人兼主任 09:30 – 11:00 选择你的道路小组会议:乙肝、丁肝和肝癌的职业道路 主持人:Thomas Tu 小组成员:Antonio Bertoletti 博士,医学博士,杜克-新加坡国立大学医学院教授;Alexander Koenig 博士,葛兰素史克科学研究员;Florian Lempp,博士,理学硕士,Humabs BioMed、Vir Biotechnology 高级研究主任; Ulrike Protzer 博士,慕尼黑工业大学病毒学研究所病毒学教授兼主任;Josh Radke 博士,美国国家过敏和传染病研究所艾滋病司药物发现和临床前研究分支项目官员;Hélène Strick-Marchand 博士,巴斯德研究所研究科学家组组长;Liudi Tang 博士,Baruch S. Blumberg 研究所助理教授 11:00 – 12:00 互动圆桌讨论
1 Amit S、Beni SA、Biber A、Grinberg A、Leshem E、Regev-Yochay G. 以色列医护人员接种疫苗后感染 COVID-19 的情况。Emerg Infect Dis。2021 年 4 月 [引用日期]。https://doi.org/10.3201/eid2704.210016 2 WHO。关于制定 COVID-19 疫苗国家部署和疫苗接种计划的指南 https://www.who.int/publications/i/item/WHO-2019-nCoV-Vaccine_deployment-2020.1 3 美国疾病控制和预防中心 (CDC):https://www.cdc.gov/coronavirus/2019-ncov/vaccines/index.html 4 WHO。COVID-19 疫苗接种活动的感染预防和控制 (IPC) 原则和程序。 2021 年 1 月 15 日。https://www.who.int/publications/i/item/who-2019-ncov-vaccination-IPC-2021-1 5 ANSI/ASHRE/ASHE。ANSI/ASHRE/ASHE 标准 170-2017 附录。医疗设施通风 6 国家卫生部,《国家 IPC 政策实施实用手册》(2020 年 3 月) 7 国家卫生部。COVID-19 疾病:感染预防和控制指南(第 2 版),2020 年 5 月
15年来,他曾担任乔治·米德·邦德(George Meade Bond)的海洋工程教授,史蒂文斯理工学院(StevensTechnol会)的戴维森实验室主任,在那里他领导了几项重大研究来预测和评估雨水泛滥事件。他是美国土木工程师学会(ASCE)的2001年Karl Emil Hilgard奖和2007年海洋工程学院的Denny奖章的获得者。Blumberg是AMS和ASCE的研究员,是150多种有关海洋学和灭亡的期刊文章的作者。由于他的广泛研究专业知识,在异常天气条件下,他经常受到媒体的追捧。
Brendan Abolins – 伊士曼化学公司 Coleman Adams – 清洁能源风险投资集团 Jason Blumberg – Earth Foundry Brandon Bruce – Market Square Ventures John Bruck – Market Square Ventures Doug Buerkle – LTM Ventures Lindsey Cox – Launch Tennessee Eric Dobson – Community Equity Partners Jonathan Goldman – 佐治亚理工学院 VentureLab Alison Gotkin – 雷神技术研究中心 Maha Krishnamurthy – 田纳西大学研究基金会 Paul Leggett – Mithril Capital Management Vig Sherrill – General Graphene Lilly Tench – Spark Innovation Center Grady Vanderhoofven – Three Roots Capital Peter Winter – In-Q-Tel Johanna Wolfson – Prime Impact Fund
• Brendan Abolins,伊士曼化学公司 • Coleman Adams,清洁能源风险投资集团 • Jason Blumberg,Energy Foundry • Doug Buerkle,LTM Ventures • Aaron Chockla,True North Ventures • Jonathan Goldman,佐治亚理工学院 VentureLab • Alison Gotkin,联合技术研究中心 • Paul Leggett,Mithril Capital Management • Sanjiv Malhotra,SPARKZ Inc. • Eric McFarland,加州大学圣巴巴拉分校 • Stacey Patterson,田纳西大学 • Vig Sherrill,General Graphene • Mary Anne Sullivan,霍金路伟 • Van Tucker,Launch Tennessee • Grady Vanderhoofven,Three Roots Capital • Peter Winter,In-Q-Tel • Johanna Wolfson,PRIME Impact Fund • Jetta Wong,洛杉矶清洁技术孵化器
DNA循环是对双学领域中浓厚兴趣的话题,因为这对于基因调节非常重要[1-3],以及DNA的重组,包装和更多[4]。蛋白质介导的DNA环主要是由约80 fn的力驱动的[5]。然而,在生物逻辑细胞的高度动态和非平衡环境中,DNA不断地从其细胞内环境中受到piconewton尺度的力,这可以超过典型的热量波动的大量级别的尺度级[5-7]。使用光学捕获来测量张力对循环时间的这种影响,很明显,小于piconewton的力可以增加循环时间的数量级[8](见图1用于插图)。过去已经通过分析半辅助聚合物的环化过程对循环时间对DNA中的张力的这种依赖性进行了研究。Blumberg等。[9]开始了这种探索,研究了蛋白质介导的DNA循环作为两态系统,在详细平衡的含义下。后来,Shin等。[10]投资了与障碍逃生问题相同的主题。在低力状态(f <80 fn)中,在生物学环境中特别相关,这些理论在预测循环形成时间的力依赖性的预测中不同意。第一个理论表明,循环时间在f 2中呈指数增长,而第二个理论表明f的指数增加了。到今天为止,尚不清楚哪个是正确的。此外,在这种低力制度中,没有实验数据可以将这些理论付诸实践。在较高的力量下,可以表明Shin等人的障碍逃逸方法。[10]与Chen等人的可用实验数据非常吻合。[8],而Blumberg等人的两态模型。[10]不是。在这封信中,我们证明了在实验和障碍理论之间进行的良好一致性,应提出对较小的力量分解的,然后在考虑更长的DNA链时,该理论中的假设变得不准确。然后我们提出一个小说
Aguirre-Mardones,C.,Iranzo,A.,Vilas,D.,Serradell,M.,Gaig,C.,Santamaria,J。,&Tolosa,E。(2015年)。特发性快速眼动睡眠行为中的非运动症状的患病率和时间表。神经病学杂志,262(6),1568 - 1578。https://doi.org/10。1007/S00415-015-7742-3美国睡眠医学学院(2014)。 I. L. Darien(ed。) ),《睡眠障碍的国家间分类:诊断和编码手册》(第三版,修订版 edn)。 美国睡眠医学学院。 Antelmi,E.,Donadio,V.,Incensi,A.,Plazzi,G。,&Liguori,R。(2017)。 皮肤神经磷酸化的α-突触核蛋白沉积物在特发性REM睡眠行为障碍中。 Neurology,88(22),2128 - 2131。https:// doi。 org/10.1212/wnl.0000000000003989 Arnulf,I. (2012)。 REM睡眠行为障碍:运动表现和病理生理学。 运动障碍,27(6),677 - 689。https:// doi。 org/10.1002/mds.24957 Aurora,R。N.,Zak,R。S.,Maganti,R。K.,Auerbach,S。H.,Casey,K。R.,Chowdhuri,S.,Karippot,Karippot,A. (2010)。 治疗REM睡眠行为障碍(RBD)的最佳实践指南。 临床睡眠医学杂志,6(1),85 - 95。 Blumberg,M。S.和Plumeau,A。M.(2016)。 在REM睡眠行为障碍中的“梦制定”的新观点。 睡眠医学评论,30,34 - 42。https://doi.org/10.1016/j.smrv.2015.12.0021007/S00415-015-7742-3美国睡眠医学学院(2014)。I. L. Darien(ed。) ),《睡眠障碍的国家间分类:诊断和编码手册》(第三版,修订版 edn)。 美国睡眠医学学院。 Antelmi,E.,Donadio,V.,Incensi,A.,Plazzi,G。,&Liguori,R。(2017)。 皮肤神经磷酸化的α-突触核蛋白沉积物在特发性REM睡眠行为障碍中。 Neurology,88(22),2128 - 2131。https:// doi。 org/10.1212/wnl.0000000000003989 Arnulf,I. (2012)。 REM睡眠行为障碍:运动表现和病理生理学。 运动障碍,27(6),677 - 689。https:// doi。 org/10.1002/mds.24957 Aurora,R。N.,Zak,R。S.,Maganti,R。K.,Auerbach,S。H.,Casey,K。R.,Chowdhuri,S.,Karippot,Karippot,A. (2010)。 治疗REM睡眠行为障碍(RBD)的最佳实践指南。 临床睡眠医学杂志,6(1),85 - 95。 Blumberg,M。S.和Plumeau,A。M.(2016)。 在REM睡眠行为障碍中的“梦制定”的新观点。 睡眠医学评论,30,34 - 42。https://doi.org/10.1016/j.smrv.2015.12.002I. L. Darien(ed。),《睡眠障碍的国家间分类:诊断和编码手册》(第三版,修订版edn)。美国睡眠医学学院。Antelmi,E.,Donadio,V.,Incensi,A.,Plazzi,G。,&Liguori,R。(2017)。皮肤神经磷酸化的α-突触核蛋白沉积物在特发性REM睡眠行为障碍中。Neurology,88(22),2128 - 2131。https:// doi。org/10.1212/wnl.0000000000003989 Arnulf,I.(2012)。REM睡眠行为障碍:运动表现和病理生理学。运动障碍,27(6),677 - 689。https:// doi。org/10.1002/mds.24957 Aurora,R。N.,Zak,R。S.,Maganti,R。K.,Auerbach,S。H.,Casey,K。R.,Chowdhuri,S.,Karippot,Karippot,A.(2010)。治疗REM睡眠行为障碍(RBD)的最佳实践指南。临床睡眠医学杂志,6(1),85 - 95。Blumberg,M。S.和Plumeau,A。M.(2016)。在REM睡眠行为障碍中的“梦制定”的新观点。睡眠医学评论,30,34 - 42。https://doi.org/10.1016/j.smrv.2015.12.002