- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 第一、第二、第三、第四、第五和第六上诉人为 Nigel Pleming Q.C. 先生、Catherine Dobson 女士和 Stephanie David 女士(由 Harrison Grant 指示);第七上诉人为 Ben Jaffey Q.C. 先生、Catherine Dobson 女士、Flora Robertson 女士和 Stephanie David 女士(由伦敦交通局法务部指示);被告人为 James Maurici Q.C. 先生、David Blundell 先生、Andrew Byass 先生和 Heather Sargent 女士(由政府法律部门指示);和 Richard Turney 先生(由 Bryan Cave Leighton Paisner LLP 委托)代表第一利益相关方 第二和第三利益相关方未出庭,也没有代表 Charles Banner 先生 Q.C.(由 CMS Cameron McKenna Nabarro Olswang LLP 委托)代表第四利益相关方 Helen Mountfield 女士 Q.C.和 Raj Desai 先生(由 WWF-UK 委托)代表介入方 听证日期:2019 年 10 月 17、18、22 和 23 日 进一步书面陈述:2019 年 11 月 1 日和 6 日 - - - - - - - - - - - - - - - - - - - - - - - - - - 法院批准作出判决
1。Knudsen,L。B. &lau,J. Liraglutide和Semaglutide的发现和发展。 正面。 内分泌。 10,155(2019)。 2。 Lau,J。等。 发现了曾经每周胰高血糖素的肽-1(GLP-1)类似物的semaglutide。 J. Med。 化学。 58,7370–7380(2015)。 3。 Blundell,J。等。 每周一次的半紫鲁丁对食欲,饮食的控制,食物偏好和体重的影响,对肥胖症患者的影响。 糖尿病肥胖。 METAB。 19,1242–1251(2017)。 4。 Petersen,J。等。 GLP-1指导的NMDA受体拮抗作用用于肥胖治疗。 自然629,1133–1141(2024)。 5。 Gabery,S。等。 Semaglutide通过分布式神经途径降低了啮齿动物的体重。 JCI Insight 5,(2020)。 6。 Chuong,V。等。 胰高血糖素样肽-1(GLP-1)模拟半卢比硫酸盐可减少饮酒并调节中央GABA神经传递。 JCI Insight 8,(2023)。 7。 Aranäs,C。等。 semaglutide降低了雄性和雌性大鼠的酒精摄入量和类似饮酒。Knudsen,L。B.&lau,J.Liraglutide和Semaglutide的发现和发展。正面。内分泌。10,155(2019)。2。Lau,J。等。 发现了曾经每周胰高血糖素的肽-1(GLP-1)类似物的semaglutide。 J. Med。 化学。 58,7370–7380(2015)。 3。 Blundell,J。等。 每周一次的半紫鲁丁对食欲,饮食的控制,食物偏好和体重的影响,对肥胖症患者的影响。 糖尿病肥胖。 METAB。 19,1242–1251(2017)。 4。 Petersen,J。等。 GLP-1指导的NMDA受体拮抗作用用于肥胖治疗。 自然629,1133–1141(2024)。 5。 Gabery,S。等。 Semaglutide通过分布式神经途径降低了啮齿动物的体重。 JCI Insight 5,(2020)。 6。 Chuong,V。等。 胰高血糖素样肽-1(GLP-1)模拟半卢比硫酸盐可减少饮酒并调节中央GABA神经传递。 JCI Insight 8,(2023)。 7。 Aranäs,C。等。 semaglutide降低了雄性和雌性大鼠的酒精摄入量和类似饮酒。Lau,J。等。发现了曾经每周胰高血糖素的肽-1(GLP-1)类似物的semaglutide。J. Med。 化学。 58,7370–7380(2015)。 3。 Blundell,J。等。 每周一次的半紫鲁丁对食欲,饮食的控制,食物偏好和体重的影响,对肥胖症患者的影响。 糖尿病肥胖。 METAB。 19,1242–1251(2017)。 4。 Petersen,J。等。 GLP-1指导的NMDA受体拮抗作用用于肥胖治疗。 自然629,1133–1141(2024)。 5。 Gabery,S。等。 Semaglutide通过分布式神经途径降低了啮齿动物的体重。 JCI Insight 5,(2020)。 6。 Chuong,V。等。 胰高血糖素样肽-1(GLP-1)模拟半卢比硫酸盐可减少饮酒并调节中央GABA神经传递。 JCI Insight 8,(2023)。 7。 Aranäs,C。等。 semaglutide降低了雄性和雌性大鼠的酒精摄入量和类似饮酒。J. Med。化学。58,7370–7380(2015)。 3。 Blundell,J。等。 每周一次的半紫鲁丁对食欲,饮食的控制,食物偏好和体重的影响,对肥胖症患者的影响。 糖尿病肥胖。 METAB。 19,1242–1251(2017)。 4。 Petersen,J。等。 GLP-1指导的NMDA受体拮抗作用用于肥胖治疗。 自然629,1133–1141(2024)。 5。 Gabery,S。等。 Semaglutide通过分布式神经途径降低了啮齿动物的体重。 JCI Insight 5,(2020)。 6。 Chuong,V。等。 胰高血糖素样肽-1(GLP-1)模拟半卢比硫酸盐可减少饮酒并调节中央GABA神经传递。 JCI Insight 8,(2023)。 7。 Aranäs,C。等。 semaglutide降低了雄性和雌性大鼠的酒精摄入量和类似饮酒。58,7370–7380(2015)。3。Blundell,J。等。每周一次的半紫鲁丁对食欲,饮食的控制,食物偏好和体重的影响,对肥胖症患者的影响。糖尿病肥胖。METAB。 19,1242–1251(2017)。 4。 Petersen,J。等。 GLP-1指导的NMDA受体拮抗作用用于肥胖治疗。 自然629,1133–1141(2024)。 5。 Gabery,S。等。 Semaglutide通过分布式神经途径降低了啮齿动物的体重。 JCI Insight 5,(2020)。 6。 Chuong,V。等。 胰高血糖素样肽-1(GLP-1)模拟半卢比硫酸盐可减少饮酒并调节中央GABA神经传递。 JCI Insight 8,(2023)。 7。 Aranäs,C。等。 semaglutide降低了雄性和雌性大鼠的酒精摄入量和类似饮酒。METAB。19,1242–1251(2017)。 4。 Petersen,J。等。 GLP-1指导的NMDA受体拮抗作用用于肥胖治疗。 自然629,1133–1141(2024)。 5。 Gabery,S。等。 Semaglutide通过分布式神经途径降低了啮齿动物的体重。 JCI Insight 5,(2020)。 6。 Chuong,V。等。 胰高血糖素样肽-1(GLP-1)模拟半卢比硫酸盐可减少饮酒并调节中央GABA神经传递。 JCI Insight 8,(2023)。 7。 Aranäs,C。等。 semaglutide降低了雄性和雌性大鼠的酒精摄入量和类似饮酒。19,1242–1251(2017)。4。Petersen,J。等。 GLP-1指导的NMDA受体拮抗作用用于肥胖治疗。 自然629,1133–1141(2024)。 5。 Gabery,S。等。 Semaglutide通过分布式神经途径降低了啮齿动物的体重。 JCI Insight 5,(2020)。 6。 Chuong,V。等。 胰高血糖素样肽-1(GLP-1)模拟半卢比硫酸盐可减少饮酒并调节中央GABA神经传递。 JCI Insight 8,(2023)。 7。 Aranäs,C。等。 semaglutide降低了雄性和雌性大鼠的酒精摄入量和类似饮酒。Petersen,J。等。GLP-1指导的NMDA受体拮抗作用用于肥胖治疗。自然629,1133–1141(2024)。5。Gabery,S。等。Semaglutide通过分布式神经途径降低了啮齿动物的体重。JCI Insight 5,(2020)。6。Chuong,V。等。胰高血糖素样肽-1(GLP-1)模拟半卢比硫酸盐可减少饮酒并调节中央GABA神经传递。JCI Insight 8,(2023)。7。Aranäs,C。等。 semaglutide降低了雄性和雌性大鼠的酒精摄入量和类似饮酒。Aranäs,C。等。semaglutide降低了雄性和雌性大鼠的酒精摄入量和类似饮酒。
地热能是一种可再生能源的一种形式,无论天气,气候和日光如何,都可以全天可用。它包含地球内部的可用热量,并且长期以来一直与温泉,蒸汽通风口和水热活动相关。因此,以天然弹簧的热水形式的地热能已被用于沐浴和烹饪和加热。在过去的100年中,它也用于发电。地质在决定资源的位置和等级方面起着至关重要的作用。但是,与其他地球化资源(例如碳氢化合物)不同,它不能存储和运输。我的名字叫斯图尔特·西蒙斯(Stuart Simmons),我是犹他州欧吉(Egi)的犹他州锻造项目的地球科学家之一。本演讲是对地热资源的介绍。它针对对能源资源,地球科学和/或工程学科感兴趣的受众。一个目标是描述地热能在何处以及如何利用地热能。另一个目标是引入传热,焓和力量的基本概念。在此标题幻灯片中,您可以看到犹他州西南部罗斯福温泉的Blundell发电厂。该发电站经过大约十年的一致探索,于1984年委托。这是犹他州最大的生产场。
Anne-Kathrin Baczko 1.2,⋆,Matthias Kadler 3,Eduardo Ros 2,Christian M.来自3,4,2,Maciek Wielgus 2,Manel Perucho 5.6,Thomas P. Kichbaum 2,Mislav Balokovi´c 7 13.2,Luca Ricci 3.2,Kazunori Akiyama 14,15.8,Ezequiel Albentosa-Ruíz5,Antxon Alberdi 16,Walter Alef 2,Juan Carlos Algaba 17,Juan Carlos Algaba 17,Richard Anantua 18,142,8.9 Bidisha Bandyopadhyay 20,John Barrett 14,MichiBauböck21,Bradford A. Benson 22.23,Dan Bintley 24.25,Raymond Blundell 9,Katherine L.Bouman 26,Geo Qo Qo Qo i Q. Re i Q. Rey C. Bower C. Bower 27.28 Britzen 2,Avery E. Broderick 32,33.34,Dominique Broguiere 31,Thomas Bronzwaer 13,Sandra Bustamante 35,Do-Youung Byun 36.37,John E. Carlstrom 38.23,39.40 Chatterjee 43,Ming-Tang Chen 27,Yongjun Chen 44.45,Xiaopeng Cheng 36,Ilje Cho 16,36.46,Pierre Christian 47,Nicholas S. Conroy 48.9,John E. Conway 41,John E. Conway 41,James M.Cordes 43,Thomas M.Crawford 23.38,Geo b.
这项研究是在芬兰国防军(AP5105)和统计芬兰的限制访问中进行的。这里表达的观点是作者的观点,不一定反映芬兰国防军,芬兰统计,芬兰银行或欧洲中央银行的观点。我们感谢芬兰统计局Valtteri Valkonen的项目协调员在数据和非常有见地的评论方面的帮助。We also thank Richard Blundell, Markus Brunnermeier, Bob Chirinko, Doug Diamond, Mark Gertler, Simon Gilchrist, Lubos Pastor, Monika Piazzesi, Raghu Rajan, Claire Shi, Andrei Shleifer, and conference and seminar participants at Aalto University, the Bank of Finland, the Board of the Bank of Finland, CES-ifo Summer研究所:关于经济学主观期望和概率的期望形成,CEBRA年度会议,CEPR家庭财务会议,Danmark国家银行,Cowles宏观会议,欧洲中央银行,EABCN资产定价和宏观宏观会议,欧洲储备会,欧洲储备会,汉布尔德大学,NBER MONETRICE CHERICT,INSTISS OFKEELES,UC INST,UC INSTINGY INSIC,INSTING INSTING IN INSTING IN IN INSP,芝加哥,曼海姆大学和WHU有价值的评论。我们非常感谢德意志政府银行的财政支持。韦伯还感谢芝加哥大学商学院,芝加哥大学布斯商学院FAMA研究基金的财政支持,以及FAMA-MILLER中心。
Alison Blanchard,化疗专科护士 曼彻斯特 NHS 信托 Alison Jones,临床技能促进者 布里斯托皇家儿童医院 Amanda Nordoff,儿科执业护士教育者 皇家马斯登医院 Amber Walker,临床实践促进者 伦敦大学学院医院 Andrea Lee,临床教育者 曼彻斯特 NHS 信托 Andrea Thomas,实践发展护士,阿登布鲁克医院,剑桥大学医院 NHS 基金会信托 Ashley Wyse,临床技能促进者 爱丁堡皇家儿童医院 Chelsea Hammond,前护士教育者 CLIC 中士 Cindy Sparkes,化疗实践教育者 大奥蒙德街儿童 NHS 基金会信托 Claire Lawson,CYP 副化疗护士专家 威尔士彩虹病房儿童医院 Claire Mackenzie,实践教育者 威尔士彩虹病房儿童医院 Dani Jones,实践教育者 CYPICS 诺丁汉/莱斯特 Em Patel,实践教育者 大奥蒙德街医院儿童 NHS 基金会信托 Hannah Dear,前护士教育者 CLIC 中士 Helen Blundell,南安普敦大学医院临床护士教育者 Hilary Quinton,谢菲尔德儿童 NHS 基金会信托肿瘤学和血液学首席护士。 Jeanette Hawkins,CCLG 护士长 Julia Bottle,教育护士 伯明翰儿童医院 Julie Brown,临床教育家,利兹儿童医院,利兹教学医院 NHS 信托 Juliette Walter,实践发展护士,阿登布鲁克医院,剑桥大学医院 NHS 基金会 Laura Healy,实践教育家肿瘤学 / 血液学 Alder Hey 儿童医院 Linda Sanderson,前护士教育家 - CLIC Sargent Louise Ollett,临床教育家 大北儿童医院纽卡斯尔 NHS 信托 Nadia Freri,儿科临床护士教育家皇家马斯登医院 Natalie Stringfellow,临床教育家 曼彻斯特 NHS 信托 Phillipa Bower,实践教育家谢菲尔德儿童 NHS 基金会。 Ruth Whitlock,执业发展护士,阿登布鲁克医院,剑桥大学医院 NHS 基金会 Suzanne Coulson,临床教育家,利兹儿童医院,利兹教学医院 NHS 基金会 Tracey DeMott,前 CLIC Sargent 护士教育家 Vicki Villalobos-Lopez,执业教育家 Great Ormond Street 儿童 NHS 基金会 Wendy Saegenschnitter,教育主管 布里斯托尔皇家儿童医院
1。Antman EM,Loscalzo J.心脏病学的精确医学。nat Rev car-diol。2016; 13(10):591-602。 2。 Kuss O,Opitz ME,Brandstetter LV,Schlesinger S,Roden M,HoyerA。 2型糖尿病治疗如何用于精密糖尿病ogy? 来自174个随机ISED试验的血糖控制数据的元回归。 糖尿病学。 2023; 66:1622-1632。 3。 Jameson JL,Longo DL。 精确医学 - 个性化,问题和有前途。 n Engl J Med。 2015; 372(23):2229-2234。 4。 Hawgood S,Hook-Barnard IG,O'Brien TC,Yamamoto KR。 精确医学:超出拐点。 SCI Transl Med。 2015; 7(300):1-3。 5。 丹尼斯JM。 2型糖尿病中的精确药物:使用个性化预测模型来优化治疗的选择。 糖尿病。 2020; 69(10):2075-2085。 6。 Wilkinson J,Arnold KF,Murray EJ等。 现实的时间检查机器学习驱动的精密药物的承诺。 柳叶刀数字健康。 2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2016; 13(10):591-602。2。Kuss O,Opitz ME,Brandstetter LV,Schlesinger S,Roden M,HoyerA。2型糖尿病治疗如何用于精密糖尿病ogy?来自174个随机ISED试验的血糖控制数据的元回归。糖尿病学。2023; 66:1622-1632。3。Jameson JL,Longo DL。精确医学 - 个性化,问题和有前途。n Engl J Med。2015; 372(23):2229-2234。 4。 Hawgood S,Hook-Barnard IG,O'Brien TC,Yamamoto KR。 精确医学:超出拐点。 SCI Transl Med。 2015; 7(300):1-3。 5。 丹尼斯JM。 2型糖尿病中的精确药物:使用个性化预测模型来优化治疗的选择。 糖尿病。 2020; 69(10):2075-2085。 6。 Wilkinson J,Arnold KF,Murray EJ等。 现实的时间检查机器学习驱动的精密药物的承诺。 柳叶刀数字健康。 2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2015; 372(23):2229-2234。4。Hawgood S,Hook-Barnard IG,O'Brien TC,Yamamoto KR。精确医学:超出拐点。SCI Transl Med。2015; 7(300):1-3。 5。 丹尼斯JM。 2型糖尿病中的精确药物:使用个性化预测模型来优化治疗的选择。 糖尿病。 2020; 69(10):2075-2085。 6。 Wilkinson J,Arnold KF,Murray EJ等。 现实的时间检查机器学习驱动的精密药物的承诺。 柳叶刀数字健康。 2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2015; 7(300):1-3。5。丹尼斯JM。2型糖尿病中的精确药物:使用个性化预测模型来优化治疗的选择。糖尿病。2020; 69(10):2075-2085。6。Wilkinson J,Arnold KF,Murray EJ等。 现实的时间检查机器学习驱动的精密药物的承诺。 柳叶刀数字健康。 2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。Wilkinson J,Arnold KF,Murray EJ等。现实的时间检查机器学习驱动的精密药物的承诺。柳叶刀数字健康。2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2020; 2(12):E677-E680。7。Prasad RB,Groop L. 2型糖尿病中的精密药物。J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。J Intern Med。2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2019; 285(1):40-48。8。tsapas A,Karagiannis T,Kakotrichi P等。降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。糖尿病OBES METAB。糖尿病OBES METAB。2021; 23(9):2116-2124。9。Blundell J,Finlayson G,Axelsen M等。每周一次的半紫鲁丁对食欲,饮食的控制,食物的控制和体重的影响。糖尿病OBES METAB。 2017; 19(9):1242-1251。 10。 Palmer SC,Mavridis D,Nicolucci A等。 比较2型糖尿病患者的临床外发生和与降糖药物相关的不良事件:荟萃分析。 JAMA。 2016; 316(3):313-324。 11。 Palmer SC,Tendal B,Mustafa RA等。 葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。 bmj。 2021; 372:M4573。 12。 tsapas A,Avgerinos I,Karagiannis T等。 降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。 Ann Intern Med。 2020; 173(4):278-286。糖尿病OBES METAB。2017; 19(9):1242-1251。 10。 Palmer SC,Mavridis D,Nicolucci A等。 比较2型糖尿病患者的临床外发生和与降糖药物相关的不良事件:荟萃分析。 JAMA。 2016; 316(3):313-324。 11。 Palmer SC,Tendal B,Mustafa RA等。 葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。 bmj。 2021; 372:M4573。 12。 tsapas A,Avgerinos I,Karagiannis T等。 降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。 Ann Intern Med。 2020; 173(4):278-286。2017; 19(9):1242-1251。10。Palmer SC,Mavridis D,Nicolucci A等。比较2型糖尿病患者的临床外发生和与降糖药物相关的不良事件:荟萃分析。JAMA。 2016; 316(3):313-324。 11。 Palmer SC,Tendal B,Mustafa RA等。 葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。 bmj。 2021; 372:M4573。 12。 tsapas A,Avgerinos I,Karagiannis T等。 降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。 Ann Intern Med。 2020; 173(4):278-286。JAMA。2016; 316(3):313-324。 11。 Palmer SC,Tendal B,Mustafa RA等。 葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。 bmj。 2021; 372:M4573。 12。 tsapas A,Avgerinos I,Karagiannis T等。 降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。 Ann Intern Med。 2020; 173(4):278-286。2016; 316(3):313-324。11。Palmer SC,Tendal B,Mustafa RA等。葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。bmj。2021; 372:M4573。12。tsapas A,Avgerinos I,Karagiannis T等。降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。Ann Intern Med。 2020; 173(4):278-286。Ann Intern Med。2020; 173(4):278-286。
轮换项目名称 使用 100 万个可诱导 DNA 条形码进行原位谱系追踪实验室主任 (PI) 姓名 Jamie Blundell 第二位指导老师(如适用) N/A 项目早期检测指导老师电子邮件 jrb75@cam.ac.uk 实验室位置 哈奇森 MRC 研究中心项目概要目的和目标维持血液、皮肤、肠道和其他组织的干细胞处于不断更新的状态,从而积累基因改变,其中一些导致克隆扩增和癌症 [1]。理解这一点需要能够测量组织维持期间发生的群体动态。在此,我们建议构建一个原位谱系追踪工具,该工具可以诱导生成数百万个 DNA 条形码组合,从而允许人们使用下一代测序以精确度并行追踪数百万个细胞谱系。与以前的半定量方法 [2] 不同,这项技术将能够定量追踪与体内组织维持相关的克隆动态,并深入了解如何实现体内平衡以及它在癌症早期阶段如何崩溃。我们之前在酿酒酵母中的工作已经证明,基于 cre-lox 系统的位点特异性 DNA 条形码和谱系动态的定量追踪可用于深入了解突变如何在大量细胞群体中产生、扩展和竞争 [3]。我们与长期合作伙伴 Sasha Levy 进一步开发了这项技术,现在可以原位生成条形码多样性,而无需转化质粒文库。这项改进的技术将利用 3 个串联 loxP“着陆垫”,每个“着陆垫”(在 Cre 诱导后)可以不可逆地整合存储在基因组其他地方的三个独立串联阵列中的约 100 个独特条形码序列中的一个。对于这个 MRes 轮换项目,我们计划扩大这项技术的规模,以在酵母中稳健地生成 100 万个独特的条形码组合。这将证明该技术能够以单细胞精度追踪体内细胞谱系,从而为干细胞生物学和癌症发病中的主要未解问题提供参考。实验计划 学生将首先构建由 loxP 位点分隔的约 100 个条形码组成的长串联阵列构建体,并使用标准同源重组将此构建体整合到已包含 cre-lox 着陆垫的酵母菌株的基因组中。然后,学生将研究此构建体可诱导的条形码多样性如何取决于串联阵列的诱导条件和基因组位置。优化后,学生将整合另外两个串联阵列,并尝试实现超过 100 万个独特条形码的多样性,将使用定制设计的 2 步 PCR 协议进行仔细量化,该协议使用唯一分子标识符 (UMI) 来标记单个 DNA 分子。
[1] M. V. Chao,“神经营养蛋白及其受体:许多信号通路的收敛点”,Nat。修订版Neurosci。,卷。4,不。4,pp。299–309,2003。[2] M. Bothwell,“ NGF,BDNF,NT3和NT4”,在神经营养因素中。实验药理学手册,施普林格,柏林,海德堡,2014年。[3] R. Levi-Montalcini,H。Meyer和V. Hamburger,“体外实验对小鼠肉瘤180和37对雏鸡胚胎的感觉和交感神经系统的影响,”癌症Res。,1954年。[4] R. Levi-Montalcini,“ 35年后的神经生长因子”,科学(80-。)。,1987。[5] Y.A. Barde,D。Edgar和H. Thoenen,“哺乳动物大脑的新神经营养因子的纯化”,Embo J.,1982。[6] K. R. Jones和L. F. Reichardt,“人类基因的分子克隆,该基因是神经生长因子家族的成员。”natl。学院。SCI。 U. S. A.,1990。 [7] P. C. Maisonpierre等。 ,“神经营养蛋白3:与NGF和BDNF有关的神经营养因子”,科学(80-。 )。 ,1990。 [8] A. Hohn,J。Leibrock,K。Bailey和Y. A. Barde,“神经生长因子/脑源性神经营养因子家族的新成员的识别和表征”,自然,1990年。 [9] A. Rosenthal等。 ,“新型人类神经营养因子的主要结构和生物学活性”,Neuron,1990。 [10] N. Y. IP等。 natl。 学院。 SCI。SCI。U. S. A.,1990。[7] P. C. Maisonpierre等。,“神经营养蛋白3:与NGF和BDNF有关的神经营养因子”,科学(80-。)。,1990。[8] A. Hohn,J。Leibrock,K。Bailey和Y.A. Barde,“神经生长因子/脑源性神经营养因子家族的新成员的识别和表征”,自然,1990年。[9] A. Rosenthal等。,“新型人类神经营养因子的主要结构和生物学活性”,Neuron,1990。[10] N. Y. IP等。natl。学院。SCI。SCI。,“哺乳动物神经营养蛋白4:结构,染色体定位,组织分布和受体特异性。”U. S. A.,1992。[11] R. Gotz等。,“ Neurotrophin-6是神经生长因子家族的新成员”,自然,1994年。[12] K. O. Lai,W。Y. Fu,F。C. F. Ip和N. Y.单元格。Neurosci。,1998。[13] M. A. Bothwell和E. M. Shopter,“β神经生长因子的离解平衡常数”,J Biol Chem,1977。[14] C. Radziejewski,R。C。Robinson,P。S。S. Distefano和J. W. Taylor,“脑源性神经营养因子和神经营养因子和神经营养蛋白3。的二聚体结构和构象稳定性,” Biiochemistry,1992。[15] M. J. Butte,P。K。Hwang,W。C。Mobley和R. J. Fletterick,“ Neurotrophin-3同二聚体的晶体结构显示出不同的区域用于结合其受体,” 1998年。[16] N.[17] R. C. Robinson等。,“神经营养蛋白4同二聚体的结构和脑衍生的神经营养因子/神经营养蛋白4异二聚体揭示了一个常见的TRK结合位点,”蛋白质SCI。,2008。[18] K. K. Teng,S。Felice,T。Kim和B. L. Hempstead,“了解胸部营养蛋白的作用:最近的进步和挑战”,发展性神经生物学。2010。401–3,1992。:ebsCohost,” Annu。修订版Neurosci。[19] G. CM,“通过生理活性调节脑神经营养蛋白表达。”趋势Pharmacol Sci,pp。[20] S. D. Skaper,“神经营养因素:概述”,《分子生物学方法》,2018年。[21] A. K. McAllister,L。C。Katz和D. C. Lo,“神经营养蛋白和突触可塑性。,1999。[22] S. Pezet和S. B. McMahon,“神经营养蛋白:疼痛的介体和调节剂”,Annu。修订版Neurosci。,2006年。[23] D. R. Kaplan,B。L。Hempstead,D。Martin-Zanca,M。V。Chao和L. F. Parada,“ TRK原型癌基产品:神经生长因子的信号传递受体,”科学(80-。)。,1991。[24] R. Klein等。,“ TRKB酪氨酸蛋白激酶是脑源性神经营养因子
参考文献 Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron, A., Paino, A., Plappert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N., Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba, W., & Zhang, L. ( 2019 ). Solving Rubik's Cube with a Robot Hand. ArXiv Preprint . arXiv: 1910.07113 . Allport, A. ( 1993 ). Attention and control: Have we been asked the bad questions? A critical review of twenty-fiven years.注意力和表现 XIV:实验心理学、人工智能和认知神经科学中的协同作用,14,183。Aminoff, EM、Kveraga, K. 和 Bar, M。(2013 年)。海马旁皮质在认知中的作用。认知科学趋势,17(8),379 – 390。https://doi.org/10.1016/j.tics。2013.06.009 Baddeley, AD(2012 年)。工作记忆:理论、模型和争议。心理学年鉴,63,1 – 29。 https://doi.org/ 10.1146 /annurev-psych- 120710-100422 Baddeley, AD 和 Della Sala, S. (1996)。工作记忆和执行控制。伦敦皇家学会哲学学报。B 系列,生物科学,351(1346),1397–403;讨论 1403–4。https://doi.org/ 10.1098 /rstb。1996.0123 Baddeley, AD 和 Hitch, G. (1974)。工作记忆。载于 GH Bower(编辑),《学习和动机心理学》(第 8 卷,第 47–89 页)。爱思唯尔。 https://doi.org/ 10.1016/S0079-7421(08)60452-1 Behrens, TEJ、Muller, TH、Whittington, JCR、Mark, S.、Baram, AB、Stachenfeld, KL 和 Kurth-Nelson, Z. (2018)。什么是认知地图?组织知识以实现灵活行为。神经元,100(2),490–509。https://doi.org/ 10.1016 /j.neuron。2018.10.002 Bellmund, JLS、Gärdenfors, P.、Moser, EI 和 Doeller, CF (2018)。导航认知:人类思维的空间代码。科学(纽约,NY),362(6415)。 https://doi.org/ 10.1126 /science.aat 6766 比勒费尔德大学,认知交互技术中心。认知交互技术中心。https://www.cit-ec.de/en Bisley, JW,& Mirpour, K. (2019)。优先级图的神经实例化。当前心理学观点,29,108 – 112。https://doi.org/ 10。1016 /j.copsyc。2019。01。002 Botvinick, M.、Ritter, S.、Wang, JX、Kurth-Nelson, Z.、Blundell, C.,& Hassabis, D. (2019)。强化学习,快与慢。认知科学趋势,23(5),408–422。https://doi.org/ 10。1016/j.tics。2019。02。006 Bundesen,C。(1990)。视觉注意力理论。心理学评论,97(4),523–547。https://doi.org/ 10。1037/0033-295X。97。4。523 比勒费尔德大学跨学科研究中心(ZiF)。(2012/2013)。研究小组关于“心智和大脑中的竞争和优先级控制:从任务驱动视觉的新视角”的主题。 https://www.uni-bielefeld.de/(en)/ ZiF/FG / 2012 优先 / 跨学科研究中心 (ZiF),比勒费尔德大学。(2019 / 2020)。关于“人类、动物和机器的认知行为:情境模型视角”主题的研究小组。https://www.uni-bielefeld.de/(en)/ ZiF/FG / 2019 行为/ Chittka, L.(2017)。蜜蜂认知。当代生物学,27(19),R 1049-R 1053。https://doi.org/ 10。1016 /j.cub。2017。08。008 Chiu, Y.-C.,& Egner, T.(2019)。皮质和皮质下对情境控制学习的贡献。神经科学与生物行为评论,99,33–41。https://doi.org/ 10.1016 /j.neubiorev。 2019.01.019 Chun, MM、Golomb, JD 和 Turk-Browne, NB (2011)。外部和内部注意力的分类。心理学年鉴,62,73–101。https://doi.org/ 10.1146 /annurev.psych。093008.100427 Cowan, N. (1999)。工作记忆的嵌入式过程模型。工作记忆模型:主动维护和执行控制机制,20,506。Cowan, N. (2017)。工作记忆和短期存储的多面性。心理学公报与评论,24(4),1158–1170。 https://doi.org/ 10.3758 /s 13423-016-1191-6 Cruse, H.、Dean, J. 和 Ritter, H. (Eds.)。(2000 年)。认知系统研究:第 26 卷。前理性智能:没有符号和逻辑的自适应行为和智能系统:第 1 卷。Springer 荷兰。https://doi.org/ 10.1007/978-94-010-0870-9 Cruse, H. 和 Schilling, M. (2013 年)。意识如何以及为何能够促进行动?将意识的属性归因于具身的、最低限度认知的人工神经网络。心理学前沿,4,324。https://doi.org/ 10.3389 /fpsyg。 2013.00324 Daw, ND、Niv, Y. 和 Dayan, P. (2005)。基于不确定性的前额叶和背外侧纹状体系统之间在行为控制方面的竞争。Nature Neuroscience, 8 (12), 1704–1711。https://doi.org/ 10.1038 /nn 1560 Dayan, P. 和 Berridge, KC (2014)。基于模型和无模型的巴甫洛夫奖励学习:重新评估、修订和启示。认知、情感与行为神经科学, 14 (2), 473 – 492。https://doi.org/ 10.3758 /s 13415-014-0277-8 Desimone, R. 和 Duncan, J. (1995)。选择性视觉注意的神经机制。神经科学年度评论,18,193-222。https://doi.org/ 10.1146/annurev.ne。18.030195.001205 D'Esposito, M.,& Postle, BR(2015 年)。工作记忆的认知神经科学。心理学年度评论,66,115-142。https://doi.org/ 10.1146 /annurev-psych-010814-015031 Duncan, J.(2006 年)。2004 年 Eps 中期职业奖:注意力的大脑机制。实验心理学季刊(2006 年),59(1),2-27。 https://doi.org/ 10.1080 / 17470210500260674 Duncan, J. ( 2010 ). 智力如何产生。耶鲁大学出版社。 Egner, T. ( 2017 ). Wiley 认知控制手册。John Wiley & Sons。情境模型视角”。 https://www.uni-bielefeld.de/(en)/ ZiF/FG / 2019 行为/ Chittka, L. (2017)。蜜蜂认知。当代生物学,27 (19),R 1049-R 1053。https://doi.org/ 10。1016 /j.cub。2017。08。008 Chiu, Y.-C. 和 Egner, T. (2019)。皮质和皮质下对情境控制学习的贡献。神经科学与生物行为评论,99,33–41。https://doi.org/ 10.1016 /j.neubiorev。 2019.01.019 Chun, MM、Golomb, JD 和 Turk-Browne, NB (2011)。外部和内部注意力的分类。心理学年鉴,62,73–101。https://doi.org/ 10.1146 /annurev.psych。093008.100427 Cowan, N. (1999)。工作记忆的嵌入式过程模型。工作记忆模型:主动维护和执行控制机制,20,506。Cowan, N. (2017)。工作记忆和短期存储的多面性。心理学公报与评论,24(4),1158–1170。 https://doi.org/ 10.3758 /s 13423-016-1191-6 Cruse, H.、Dean, J. 和 Ritter, H. (Eds.)。(2000 年)。认知系统研究:第 26 卷。前理性智能:没有符号和逻辑的自适应行为和智能系统:第 1 卷。Springer 荷兰。https://doi.org/ 10.1007/978-94-010-0870-9 Cruse, H. 和 Schilling, M. (2013 年)。意识如何以及为何能够促进行动?将意识的属性归因于具身的、最低限度认知的人工神经网络。心理学前沿,4,324。https://doi.org/ 10.3389 /fpsyg。 2013.00324 Daw, ND、Niv, Y. 和 Dayan, P. (2005)。基于不确定性的前额叶和背外侧纹状体系统之间在行为控制方面的竞争。Nature Neuroscience, 8 (12), 1704–1711。https://doi.org/ 10.1038 /nn 1560 Dayan, P. 和 Berridge, KC (2014)。基于模型和无模型的巴甫洛夫奖励学习:重新评估、修订和启示。认知、情感与行为神经科学, 14 (2), 473 – 492。https://doi.org/ 10.3758 /s 13415-014-0277-8 Desimone, R. 和 Duncan, J. (1995)。选择性视觉注意的神经机制。神经科学年度评论,18,193-222。https://doi.org/ 10.1146/annurev.ne。18.030195.001205 D'Esposito, M.,& Postle, BR(2015 年)。工作记忆的认知神经科学。心理学年度评论,66,115-142。https://doi.org/ 10.1146 /annurev-psych-010814-015031 Duncan, J.(2006 年)。2004 年 Eps 中期职业奖:注意力的大脑机制。实验心理学季刊(2006 年),59(1),2-27。 https://doi.org/ 10.1080 / 17470210500260674 Duncan, J. ( 2010 ). 智力如何产生。耶鲁大学出版社。 Egner, T. ( 2017 ). Wiley 认知控制手册。John Wiley & Sons。情境模型视角”。 https://www.uni-bielefeld.de/(en)/ ZiF/FG / 2019 行为/ Chittka, L. (2017)。蜜蜂认知。当代生物学,27 (19),R 1049-R 1053。https://doi.org/ 10。1016 /j.cub。2017。08。008 Chiu, Y.-C. 和 Egner, T. (2019)。皮质和皮质下对情境控制学习的贡献。神经科学与生物行为评论,99,33–41。https://doi.org/ 10.1016 /j.neubiorev。 2019.01.019 Chun, MM、Golomb, JD 和 Turk-Browne, NB (2011)。外部和内部注意力的分类。心理学年鉴,62,73–101。https://doi.org/ 10.1146 /annurev.psych。093008.100427 Cowan, N. (1999)。工作记忆的嵌入式过程模型。工作记忆模型:主动维护和执行控制机制,20,506。Cowan, N. (2017)。工作记忆和短期存储的多面性。心理学公报与评论,24(4),1158–1170。 https://doi.org/ 10.3758 /s 13423-016-1191-6 Cruse, H.、Dean, J. 和 Ritter, H. (Eds.)。(2000 年)。认知系统研究:第 26 卷。前理性智能:没有符号和逻辑的自适应行为和智能系统:第 1 卷。Springer 荷兰。https://doi.org/ 10.1007/978-94-010-0870-9 Cruse, H. 和 Schilling, M. (2013 年)。意识如何以及为何能够促进行动?将意识的属性归因于具身的、最低限度认知的人工神经网络。心理学前沿,4,324。https://doi.org/ 10.3389 /fpsyg。 2013.00324 Daw, ND、Niv, Y. 和 Dayan, P. (2005)。基于不确定性的前额叶和背外侧纹状体系统之间在行为控制方面的竞争。Nature Neuroscience, 8 (12), 1704–1711。https://doi.org/ 10.1038 /nn 1560 Dayan, P. 和 Berridge, KC (2014)。基于模型和无模型的巴甫洛夫奖励学习:重新评估、修订和启示。认知、情感与行为神经科学, 14 (2), 473 – 492。https://doi.org/ 10.3758 /s 13415-014-0277-8 Desimone, R. 和 Duncan, J. (1995)。选择性视觉注意的神经机制。神经科学年度评论,18,193-222。https://doi.org/ 10.1146/annurev.ne。18.030195.001205 D'Esposito, M.,& Postle, BR(2015 年)。工作记忆的认知神经科学。心理学年度评论,66,115-142。https://doi.org/ 10.1146 /annurev-psych-010814-015031 Duncan, J.(2006 年)。2004 年 Eps 中期职业奖:注意力的大脑机制。实验心理学季刊(2006 年),59(1),2-27。 https://doi.org/ 10.1080 / 17470210500260674 Duncan, J. ( 2010 ). 智力如何产生。耶鲁大学出版社。 Egner, T. ( 2017 ). Wiley 认知控制手册。John Wiley & Sons。(2019 年)。皮质和皮质下对情境控制学习的贡献。神经科学与生物行为评论,99,33–41。https://doi.org/ 10.1016 /j.neubiorev。2019.01.019 Chun, MM、Golomb, JD 和 Turk-Browne, NB(2011 年)。外部和内部注意力的分类。心理学年鉴,62,73–101。https://doi.org/ 10.1146 /annurev.psych。093008.100427 Cowan, N.(1999 年)。工作记忆的嵌入式过程模型。工作记忆模型:主动维护和执行控制机制,20,506。Cowan, N.(2017 年)。工作记忆和短期存储的多面性。心理学公报与评论,24(4),1158–1170。https://doi.org/ 10.3758 /s 13423-016-1191-6 Cruse, H.、Dean, J. 和 Ritter, H.(编辑)。(2000 年)。认知系统研究:第 26 卷。前理性智能:没有符号和逻辑的自适应行为和智能系统:第 1 卷。Springer 荷兰。https://doi.org/ 10.1007/978-94-010-0870-9 Cruse, H. 和 Schilling, M.(2013 年)。意识如何以及在何种程度上促进行动?将意识的属性归因于具身的、最低限度认知的人工神经网络。 Frontiers in Psychology,4,324。https://doi.org/10.3389/fpsyg。2013.00324 Daw, ND、Niv, Y. 和 Dayan, P.(2005 年)。前额叶和背外侧纹状体系统之间基于不确定性的行为控制竞争。Nature Neuroscience,8(12),1704–1711。https://doi.org/10.1038/nn 1560 Dayan, P. 和 Berridge, KC(2014 年)。基于模型和无模型的巴甫洛夫奖励学习:重新评估、修订和启示。认知、情感与行为神经科学,14(2),473–492。 https://doi.org/ 10.3758 /s 13415-014-0277-8 Desimone, R. 和 Duncan, J. (1995)。选择性视觉注意的神经机制。神经科学年度评论,18,193 – 222。https://doi.org/ 10.1146 /annurev.ne。18.030195.001205 D'Esposito, M. 和 Postle, BR (2015)。工作记忆的认知神经科学。心理学年度评论,66,115–142。https://doi.org/ 10.1146 /annurev-psych-010814-015031 Duncan, J. (2006)。 2004 年 Eps 中期职业奖:注意力的大脑机制。《实验心理学季刊》(2006 年),59(1),2–27。https://doi.org/ 10.1080 / 17470210500260674 Duncan, J.(2010 年)。智力是如何产生的。耶鲁大学出版社。Egner, T.(2017 年)。威利认知控制手册。约翰·威利父子公司。(2019 年)。皮质和皮质下对情境控制学习的贡献。神经科学与生物行为评论,99,33–41。https://doi.org/ 10.1016 /j.neubiorev。2019.01.019 Chun, MM、Golomb, JD 和 Turk-Browne, NB(2011 年)。外部和内部注意力的分类。心理学年鉴,62,73–101。https://doi.org/ 10.1146 /annurev.psych。093008.100427 Cowan, N.(1999 年)。工作记忆的嵌入式过程模型。工作记忆模型:主动维护和执行控制机制,20,506。Cowan, N.(2017 年)。工作记忆和短期存储的多面性。心理学公报与评论,24(4),1158–1170。https://doi.org/ 10.3758 /s 13423-016-1191-6 Cruse, H.、Dean, J. 和 Ritter, H.(编辑)。(2000 年)。认知系统研究:第 26 卷。前理性智能:没有符号和逻辑的自适应行为和智能系统:第 1 卷。Springer 荷兰。https://doi.org/ 10.1007/978-94-010-0870-9 Cruse, H. 和 Schilling, M.(2013 年)。意识如何以及在何种程度上促进行动?将意识的属性归因于具身的、最低限度认知的人工神经网络。 Frontiers in Psychology,4,324。https://doi.org/10.3389/fpsyg。2013.00324 Daw, ND、Niv, Y. 和 Dayan, P.(2005 年)。前额叶和背外侧纹状体系统之间基于不确定性的行为控制竞争。Nature Neuroscience,8(12),1704–1711。https://doi.org/10.1038/nn 1560 Dayan, P. 和 Berridge, KC(2014 年)。基于模型和无模型的巴甫洛夫奖励学习:重新评估、修订和启示。认知、情感与行为神经科学,14(2),473–492。 https://doi.org/ 10.3758 /s 13415-014-0277-8 Desimone, R. 和 Duncan, J. (1995)。选择性视觉注意的神经机制。神经科学年度评论,18,193 – 222。https://doi.org/ 10.1146 /annurev.ne。18.030195.001205 D'Esposito, M. 和 Postle, BR (2015)。工作记忆的认知神经科学。心理学年度评论,66,115–142。https://doi.org/ 10.1146 /annurev-psych-010814-015031 Duncan, J. (2006)。 2004 年 Eps 中期职业奖:注意力的大脑机制。《实验心理学季刊》(2006 年),59(1),2–27。https://doi.org/ 10.1080 / 17470210500260674 Duncan, J.(2010 年)。智力是如何产生的。耶鲁大学出版社。Egner, T.(2017 年)。威利认知控制手册。约翰·威利父子公司。主动维护和执行控制机制,20,506。Cowan,N。(2017 年)。工作记忆和短期存储的多面性。心理学公报与评论,24(4),1158–1170。https://doi.org/ 10.3758 /s 13423-016-1191-6 Cruse, H.、Dean, J. 和 Ritter, H.(编辑)。(2000 年)。认知系统研究:第 26 卷。前理性智能:没有符号和逻辑的自适应行为和智能系统:第 1 卷。Springer 荷兰。https://doi.org/ 10.1007/978-94-010-0870-9 Cruse, H. 和 Schilling, M。(2013 年)。意识如何以及为何会促进行动?将意识的属性归因于具身的、最低限度认知的人工神经网络。心理学前沿,4,324。https://doi.org/10.3389/fpsyg。2013.00324 Daw, ND, Niv, Y. 和 Dayan, P. (2005)。前额叶和背外侧纹状体系统之间基于不确定性的行为控制竞争。自然神经科学,8(12),1704–1711。https://doi.org/10.1038/nn 1560 Dayan, P. 和 Berridge, KC (2014)。基于模型和无模型的巴甫洛夫奖励学习:重新评估、修订和启示。认知、情感与行为神经科学,14(2),473 – 492。https://doi.org/ 10.3758 /s 13415-014-0277-8 Desimone, R. 和 Duncan, J.(1995 年)。选择性视觉注意的神经机制。神经科学年度评论,18,193 – 222。https://doi.org/ 10.1146 /annurev.ne。18.030195.001205 D'Esposito, M. 和 Postle, BR(2015 年)。工作记忆的认知神经科学。心理学年度评论,66,115–142。 https://doi.org/ 10.1146 /annurev-psych- 010814-015031 Duncan, J. (2006)。2004 年 Eps 中期职业奖:注意力的大脑机制。《实验心理学季刊》(2006),59(1),2–27。https://doi.org/ 10.1080 / 17470210500260674 Duncan, J. (2010)。智力是如何产生的。耶鲁大学出版社。Egner, T. (2017)。威利认知控制手册。约翰·威利父子公司。主动维护和执行控制机制,20,506。Cowan,N。(2017 年)。工作记忆和短期存储的多面性。心理学公报与评论,24(4),1158–1170。https://doi.org/ 10.3758 /s 13423-016-1191-6 Cruse, H.、Dean, J. 和 Ritter, H.(编辑)。(2000 年)。认知系统研究:第 26 卷。前理性智能:没有符号和逻辑的自适应行为和智能系统:第 1 卷。Springer 荷兰。https://doi.org/ 10.1007/978-94-010-0870-9 Cruse, H. 和 Schilling, M。(2013 年)。意识如何以及为何会促进行动?将意识的属性归因于具身的、最低限度认知的人工神经网络。心理学前沿,4,324。https://doi.org/10.3389/fpsyg。2013.00324 Daw, ND, Niv, Y. 和 Dayan, P. (2005)。前额叶和背外侧纹状体系统之间基于不确定性的行为控制竞争。自然神经科学,8(12),1704–1711。https://doi.org/10.1038/nn 1560 Dayan, P. 和 Berridge, KC (2014)。基于模型和无模型的巴甫洛夫奖励学习:重新评估、修订和启示。认知、情感与行为神经科学,14(2),473 – 492。https://doi.org/ 10.3758 /s 13415-014-0277-8 Desimone, R. 和 Duncan, J.(1995 年)。选择性视觉注意的神经机制。神经科学年度评论,18,193 – 222。https://doi.org/ 10.1146 /annurev.ne。18.030195.001205 D'Esposito, M. 和 Postle, BR(2015 年)。工作记忆的认知神经科学。心理学年度评论,66,115–142。 https://doi.org/ 10.1146 /annurev-psych- 010814-015031 Duncan, J. (2006)。2004 年 Eps 中期职业奖:注意力的大脑机制。《实验心理学季刊》(2006),59(1),2–27。https://doi.org/ 10.1080 / 17470210500260674 Duncan, J. (2010)。智力是如何产生的。耶鲁大学出版社。Egner, T. (2017)。威利认知控制手册。约翰·威利父子公司。8(12),1704–1711。https://doi.org/ 10.1038 /nn 1560 Dayan, P. 和 Berridge, KC(2014)。基于模型和无模型的巴甫洛夫奖励学习:重新评估、修订和启示。认知、情感与行为神经科学,14(2),473 – 492。https://doi.org/ 10.3758 /s 13415-014-0277-8 Desimone, R. 和 Duncan, J.(1995)。选择性视觉注意的神经机制。神经科学年度评论,18,193 – 222。https://doi.org/ 10.1146 /annurev.ne。 18.030195.001205 D'Esposito, M. 和 Postle, BR (2015)。工作记忆的认知神经科学。心理学年鉴,66,115–142。https://doi.org/ 10.1146 /annurev-psych-010814-015031 Duncan, J. (2006)。2004 年 Eps 中期职业奖:注意力的大脑机制。实验心理学季刊 (2006),59(1),2–27。https://doi.org/ 10.1080 / 17470210500260674 Duncan, J. (2010)。智力是如何产生的。耶鲁大学出版社。Egner, T. (2017)。 《威利认知控制手册》。John Wiley & Sons。8(12),1704–1711。https://doi.org/ 10.1038 /nn 1560 Dayan, P. 和 Berridge, KC(2014)。基于模型和无模型的巴甫洛夫奖励学习:重新评估、修订和启示。认知、情感与行为神经科学,14(2),473 – 492。https://doi.org/ 10.3758 /s 13415-014-0277-8 Desimone, R. 和 Duncan, J.(1995)。选择性视觉注意的神经机制。神经科学年度评论,18,193 – 222。https://doi.org/ 10.1146 /annurev.ne。 18.030195.001205 D'Esposito, M. 和 Postle, BR (2015)。工作记忆的认知神经科学。心理学年鉴,66,115–142。https://doi.org/ 10.1146 /annurev-psych-010814-015031 Duncan, J. (2006)。2004 年 Eps 中期职业奖:注意力的大脑机制。实验心理学季刊 (2006),59(1),2–27。https://doi.org/ 10.1080 / 17470210500260674 Duncan, J. (2010)。智力是如何产生的。耶鲁大学出版社。Egner, T. (2017)。 《威利认知控制手册》。John Wiley & Sons。