人们的安全,农业和生物多样性都受到与动物有关的威胁的严重威胁,例如野生动植物与车辆和牲畜入侵之间的碰撞。伤害,死亡,经济损失和对自然生态系统的干扰都是这些灾难的结果。由于这些事件变得越来越频繁,创造性的方法来识别和成功降低这些风险。在实时管理危害方面,诸如物理障碍和手动监控之类的传统技术通常不足。物联网(IoT)和深度学习的新发展提供了令人鼓舞的答案。卷积神经网络(CNN),尤其是使深度学习能够在包括保护区,农场和道路在内的各种环境中准确识别和分类动物。深度学习可用于训练模型以识别各种物种并预测其运动模式,从而使先发制人的行动能够阻止不幸和伤害。深度学习与物联网技术相结合,提高了系统的实时功能。可以通过摄像机,运动探测器和温度传感器等物联网设备的互联网进行可以不断监视动物活动,这些设备也可以引发瞬时反应,例如自动屏障或警报。 通过Blynk IoT等平台使这些系统的遥控和管理可行,该平台可以保证利益相关者可以及时收到通知并从任何位置采取必要的步骤。 这个物联网和深度学习组合为危险动物检测提供了完整的解决方案。可以不断监视动物活动,这些设备也可以引发瞬时反应,例如自动屏障或警报。通过Blynk IoT等平台使这些系统的遥控和管理可行,该平台可以保证利益相关者可以及时收到通知并从任何位置采取必要的步骤。这个物联网和深度学习组合为危险动物检测提供了完整的解决方案。通过降低事故的数量,它不仅可以提高安全性,而且还可以通过使牛摆脱困境和保护作物来帮助农业。此外,它对于野生动植物保护至关重要,因为它在受保护区域提供了非侵入性监测。对于人和野生动植物,这种方法通过提供可扩展,有效和实时系统来帮助创造更安全和可持续的环境。