这些脱节削弱了企业范围的标准化方法可能带来的潜在好处。在某些情况下,每个军种都在进行平行、独立的标准化工作,这可能使单个军种受益,但可能导致整个国防部缺乏标准化和互操作性。在其他情况下,当整个国防部有明显的需求和机会时,标准化工作只在单个军种中进行。在还有一些情况下,由于缺乏 JSB 类型的结构,标准化机会受到阻碍,因为没有官方场所批准“自愿联盟”聚集在一起。在所有情况下,都缺乏可见性;标准化决策是在有限的社区而不是整个国防部范围内的企业中制定和传达的。
摘要 高密度互连 (HDI) 印刷电路板 (PCB) 和相关组件对于使太空项目受益于现代集成电路(如现场可编程门阵列 (FPGA)、数字信号处理器 (DSP) 和应用处理器)日益增加的复杂性和功能性至关重要。对功能的不断增长的需求转化为更高的信号速度和越来越多的 I/O。为了限制整体封装尺寸,组件的接触焊盘间距会减小。大量 I/O 与减小的间距相结合对 PCB 提出了额外的要求,需要使用激光钻孔微孔、高纵横比核心通孔和小轨道宽度和间距。虽然相关的先进制造工艺已广泛应用于商业、汽车、医疗和军事应用;但将这些能力的进步与太空的可靠性要求相协调仍然是一个挑战。考虑了两类 HDI 技术:两级交错微孔(基本 HDI)和(最多)三级堆叠微孔(复杂 HDI)。本文介绍了按照 ECSS-Q-ST-70-60C 对基本 HDI 技术的鉴定。在 1.0 mm 间距时,该技术成功通过了所有测试。在 0.8 mm 间距时,在互连应力测试 (IST) 和导电阳极丝 (CAF) 测试中会遇到故障。这些故障为更新 HDI PCB 的设计规则提供了基础。简介通常认为 HDI PCB 有两个主要驱动因素:(1) 关键元件的小间距和高 I/O 数量;(2) 这些元件的性能不断提高,导致电路板上的信号线速度加快。微孔的使用可以缩短信号路径的长度,从而提高信号完整性和电源完整性。由于扇出内的密集布线,关键网络可能会受到串扰。在 1.0 mm 间距元件的引脚之间布线差分对需要精细的线宽和间距。0.8 mm 间距元件的埋孔之间不再可能进行差分对布线。需要在扇出区域内分割线对,分割长度决定了分割对对信号完整性的影响。单端网络宽度的变化以及差分对间距和/或走线宽度的变化将导致阻抗不连续。因此,选择合适的层结构和过孔类型将同时改善布线能力和信号完整性。在定义 HDI PCB 技术参数时,一个重要的考虑因素是元件间距和 I/O 数量不能独立处理。间距为 1.0 mm 的高引脚数元件(> 1000 引脚)可能需要使用微过孔来减少总层数或改善受控阻抗线的屏蔽。另一方面,仅具有两排焊球的 0.5 mm 间距元件的逃逸布线可在不使用微孔和细线宽和间距的情况下进行。增加层数以便能够布线一个或多个高引脚数元件将导致 PCB 厚度增加,这会通过限制通孔纵横比影响最小通孔钻孔直径,从而再次限制布线可能性。为了定义 HDI 技术参数,需要了解过去、现在和未来太空项目中使用的面阵器件 (AAD) 的规格。纵观目前正在开发的复杂太空元件,间距为 1.0 mm 的陶瓷柱栅阵列 (CCGA) 仍将是未来几年的首选封装。例如,新的 Xilinx FPGA (RT-ZU19EG: CCGA1752) [1]、CNES VT65 电信 ASIC (CCGA1752) [2] 和欧洲航天局 (ESA) 的下一代微处理器 (NGMP, CCGA625) [3] 就是这种情况。间距较小的柱状网格阵列 (0.8 毫米) 已在研发中得到展示 [4],尽管尚未发现商业实现。带有非塌陷高铅焊球的陶瓷球栅阵列 (CBGA) 用于军事和航空航天应用 [5]。当间距为 0.8 毫米及以上 (0.5 毫米) 时,陶瓷 (即密封) 封装会成为可靠性风险,因为更小的间距 (0.8 毫米) 会降低封装的可靠性。
图 3. A) 松香油的参考光谱(红色,顶部)及其库匹配(绿色,底部);B) 两个位置的图像,有明显不一致之处;C) 化学图表示收集的光谱与松香油的参考光谱之间的相似性。(红色高相关性和蓝色低相关性)
过去的洪水事件的例子 - 查看您当地当局的第19节报告有关过去的洪水事件的报告。短期和长期的极端天气事件的影响是什么?这些事件的费用是多少?谁受到影响?谁最脆弱(福祉评估可以为此提供背景)?这些事件会随着时间的推移影响如何影响?这些事件如何有效地处理?考虑什么进展顺利,什么进展不顺利?探索您对风险的集体态度。查看服务如何中断。在响应和声誉方面的成本是多少?不同社区如何受到影响?该事件如何影响社会连接?与您的本地弹性论坛联系以输入此步骤,并就过去的事件提供见解。
双列直插式封装安装在垫片上,以使引线肩部脱离镀通孔的边缘。这样做的好处是,当焊料通过孔渗透时,可以减少肩部的散热效应;它还可以避免肩部和镀通孔边缘之间出现所谓的汗焊点,而汗焊点会影响焊料提取/元件移除过程。然后将干净的烙铁头放在镀通孔的 ss 上,也接触元件引线,并添加少量焊料以形成焊桥。允许停留时间约为 2 秒,然后将焊锡丝送入点式热电偶和烙铁头之间的接头中。如果焊料渗透不成功,则移除焊料,并重复试验,使用连续更长的停留时间,最长可达约 6 秒,然后再送入焊锡丝。结果发现,将焊锡停留时间增加到 6 秒以上并不能改善结果,而且由于可能导致层压板损坏和金属间化合物厚度过大,因此这样做也不可取。如果焊接仍然不成功,则尝试以下每一种补充加热方法:
• Superwool HT2 板的分类温度为 1450°C (2642°F),与原始配方相比,由于其耐高温、低导热性和良好的耐侵蚀性,提供了创纪录的性能 • Superwool Plus HTLB 板的分类温度为 1100°C (2012°F),具有良好的柔韧性和良好的耐性,便于在刚性产品不适合的环境中安装 • Superwool Plus Strong 板的分类温度为 1200°C (2192°F),具有致密的配方
莫斯科,俄罗斯联邦 电子邮件:mariya.solopchuk.96@mail.ru,bardinaoi@yandex.ru,ngrigoryan@muctr.ru。摘要:这项工作致力于研究印刷电路板 (PCB) 孔化学镀铜之前的清洁调节和微蚀刻阶段的溶液。结果表明,在调节溶液中存在季胺的情况下,PCB 孔的带负电的初始表面会重新带电。这显然促进了随后带负电的钯活化剂胶体颗粒在 PCB 孔中的静电吸附。结果表明,微蚀刻溶液中铜离子的存在会导致表面粗糙度增加,这有助于提高所得金属层与电介质的粘附强度。关键词:印刷电路板、印刷电路板通孔、化学镀铜、通孔金属化、介电表面处理、表面充电、微蚀刻、清洁调节。1. 简介
主席领导董事会为信托的明确战略制定和拥护,该策略与信托基金的慈善物品保持一致,涵盖了所有信托质量的支柱,并且在适用的情况下,随着时间的推移,其增长愿望。
摘要 — 高密度互连 (HDI) 印刷电路板 (PCB) 和相关组件对于使太空项目受益于现代集成电路(如现场可编程门阵列、数字信号处理器和应用处理器)日益增加的复杂性和功能性至关重要。对功能性的不断增长的需求意味着更高的信号速度和越来越多的输入/输出 (I/O) 数量。为了限制整体封装尺寸,元件的触点焊盘间距会减小。大量 I/O 与减小的间距相结合对 PCB 提出了额外的要求,需要使用激光钻孔微孔、高纵横比核心过孔以及小的轨道宽度和间距。虽然相关的先进制造工艺已广泛应用于商业、汽车、医疗和军事应用,但将这些性能的进步与太空的可靠性要求相协调仍然是一个挑战。考虑了两种类型的 HDI 技术:两级交错微孔(基本 HDI)和(最多)三级堆叠微孔(复杂 HDI)。本文介绍了根据 ECSS-Q-ST-70-60C 对基本 HDI 技术的鉴定。在 1.0 毫米间距下,该技术成功通过了所有测试。在 0.8 毫米间距下,互连应力测试和导电阳极丝测试期间会遇到故障。这些故障为更新 HDI PCB 的设计规则提供了基础。
在工业环境中,生产高质量的印刷电路板(PCB)对于确保可靠的产品到达最终客户至关重要[1]至关重要。质量控制部门旨在根据预先建立的标准确保和执行工业过程的每个阶段的合规性。部门负责通过采样来对产品进行功能测试和视觉检查,这是一项经常手动的任务,依赖于员工的重点和解释。这可能会导致人类错误或未发现的缺陷,这些缺陷落在抽样之外[2]。行业4.0技术的集成,例如物联网(IoT),人工智能(AI)和云计算,在优化和确保过程中的可靠性方面起着重要作用[3]。机器学习模型处理和分析大量数据和识别模式的技术能力使得能够准确区分有缺陷的和非缺陷的PCB,检测到未安装的或错误安装的组件,甚至识别痕迹中的缺陷,例如开路通行器或短路或短路。这项技术使基于样本的检查不必要,因为可以单独分析每个生产的董事会。这项工作旨在调查不同的卷积神经网络架构,以表征工业过程中PCB中的组装缺陷。