尽管有这些重要作品,但它是2008年的开创性书籍方法的出版物符合艺术:基于艺术的研究实践(Leavy,2008年),这是一个明显的转折点,也是许多第一。方法符合艺术(Leavy,2008年)是有关基于艺术的研究的第一本研究方法。这本书涵盖了所有主要的艺术类型:文学,表演和视觉。在本文中,帕特里夏(Patricia)引入了基于艺术的研究作为一组方法论实践,描述了一种新的研究方法,绘制了历史和当代景观并创建了评估标准。这样做,她打开了整个领域。方法符合艺术(Leavy,2008年)影响了艺术教育,教育,交流,社会学,心理学,性别研究和许多其他领域的研究实践。在其原始出版时,很少有教授教授基于艺术的研究。通过方法符合艺术的结果(Leavy 2008),基于艺术的研究现在定期在世界各地的教育和社会科学部门中进行教授,并且是无数期刊特殊问题,会议和其他出版物的主题。被许多人认为是一本“圣经”,该备受喜爱的文本现在已在第三版中,在整个学科的课程中仍然被广泛采用,已被无数篇论文引用,并且已被翻译成多种语言。中文翻译的符合艺术的翻译(Leavy,2008年)是在中国出版的有关基于艺术的研究的第一本书。方法符合艺术(Leavy,2008年)是具有里程碑意义的出版物。
AXIS W100 执法记录仪是一款易于使用、轻巧坚固的执法记录仪,工作时间长达 17 小时。即使在恶劣条件下,它也能提供清晰的图像,并配备双麦克风,可提供卓越的音频和噪音抑制效果。AXIS W100 采用 Klick Fast 系统,可与大多数可用的安装选项兼容。此外,Axis Zipstream 技术允许用户存储所需的大量素材,而不会影响图像质量。该摄像机还配备 GPS/GNSS 接收器(用于获取位置数据)、低功耗蓝牙® 4.1、IEEE 802.11b/g/n 以及 6 轴陀螺仪和加速度计。
此外,在帕金森氏病,抑郁症,躁郁症,焦虑症和精神分裂症等精神病和神经系统疾病中观察到的时间感知的扭曲仍然知之甚少(Teixeira等,2013)。例如,患有抑郁症的人通常集中于过去的过去经历,并且经常报告时间似乎缓慢甚至感觉已经停止了(Ren等,2023)。同样,患有帕金森氏病的患者也倾向于感知时间更慢。另一方面,焦虑会引起时间的加速感知,尤其是在高压力和唤醒时期(Holman等,2023)。患有注意力缺陷多动障碍的人可能会感觉到时间比实际的时间更快或慢(Ptacek等,2019)。Stanghellini等。发现,精神分裂症患者可能将时间的看法描述为缺乏连续性,而感到彼此断裂的时刻(Stanghellini等,2016)。这可能表现为即时时间流的损失,使事件感到孤立和无关,这有助于组织日常活动和维持社交互动的困难。因此,时间感知的研究不仅是理解人类认知的基础,而且对实用应用具有巨大的潜力,这些应用可能会对个人和社会福祉产生积极影响,并且对于诊断和治疗各种精神病学和神经疾病具有实际意义。
分析人类运动是一个活跃的研究领域,具有各种应用。在这项工作中,我们使用机器人教练系统进行身体康复的背景下关注人类运动分析。计算机辅助评估的体育康复评估需要评估患者绩效,以完成基于用感官系统捕获的处理运动数据(例如RGB和RGB-D摄像机)完成规定的Reha-BiLitation练习。作为RGB图像的2D和3D人姿势估计取得了极大的改进,我们旨在使用从RGB-D摄像头(Microsoft Kinect)获得的运动数据和RGB视频(OpenPose和Blazepose算法)进行比较进行体育康复练习的评估。从位置(和方向)特征采用了高斯混合模型(GMM),其性能指标基于GMM的对数可能性值定义。评估是在临床患者的医学数据库上进行的,该数据库进行了较低的背痛康复运动,以前由机器人罂粟指导。
安哥拉,博茨瓦纳,科莫罗斯,刚果(民主共和国),莱索托,马达加斯加,马拉维,马拉维,莫桑比克,纳米比亚,塞舌尔,津巴布韦,斯威士兰,坦桑尼亚,坦桑尼亚,赞比亚,赞比亚
2。秘书处将定期为监督机构考虑有关活动和绩效的报告。通用公共文件将发布在UNFCCC网站上,而与这些报告有关的机密信息将根据需要通过其他方式向监督机构提供。
根据Axis.com/warranty(“ 3年保修期”),根据Axis 5年有限的硬件保修在Axis 5年有限的硬件保修期内,产品(包括电池)的保修(包括电池)应遵守3年的保修期。除了5年5年中的条款和条件有限的硬件保修外,如果电池经历了超过500个电荷周期,则保修不包括电池降解,如果相机在数据表中的规格之外使用或存储在数据表的规格之外,或者是否尚未遵守该产品的指令。在其他任何一方(或代表Axis的RMA合作伙伴)进行的3年保修期内更换电池将使主要项目的保修失效。接触轴支持或您的经销商用于电池或服务相关的事项。
大脑与来自身体内部环境的内脏信号密切相关,神经、血液动力学和外周生理信号之间存在众多关联。我们表明,这些大脑-身体共同波动可以通过单个时空模式捕获。在几个独立样本以及单回波和多回波 fMRI 数据采集序列中,我们发现静息状态全局 fMRI 信号、神经活动和一系列涵盖心血管、肺、外分泌和平滑肌系统的自主信号之间存在低频范围(0.01 - 0.1 Hz)的广泛共同波动。在静息状态下观察到的相同大脑-身体共同波动是由提示性深呼吸和间歇性感官刺激引起的唤醒以及睡眠期间的自发相位 EEG 事件引起的。此外,我们还发现,在实验性抑制呼气末二氧化碳 (PETCO2) 变化的情况下,整体 fMRI 信号的空间结构得以维持,这表明伴随觉醒而出现的呼吸驱动动脉 CO2 波动无法解释这些信号在大脑中的起源。这些发现证实,整体 fMRI 信号是自主神经系统控制的觉醒反应的重要组成部分。
摘要 - 为了使人形机器人能够在共有的环境中稳健地工作,多接触运动不仅在四肢(例如手脚),而且在四肢的中间区域(例如膝盖和肘部)的中间区域进行接触。我们开发了一种实现这种全身多接触运动的方法,该运动涉及人形机器人在中间区域的接触。可变形的板状分布式触觉传感器安装在机器人四肢的表面上,以测量接触力,而无需显着改变机器人体形。较早开发的多接触运动控制器(专门用于肢体接触)扩展以处理中间区域的接触,并且机器人运动通过反馈控制稳定,不仅使用力/扭矩传感器,还可以使用分布式的触觉传感器来稳定。通过对Dynamics模拟的验证,我们表明,开发的触觉反馈提高了全身多接触运动的稳定性,以防止干扰和环境错误。此外,寿命大小的人形RHP kaleido展示了全身多接触运动,例如向前走,同时通过前臂接触支撑身体,并在坐着的姿势和大腿接触中平衡姿势。
训练补偿动力不匹配的三角洲(残留)动作模型。然后用Delta动作模型集成到模拟器中,以ASAP微调进行预训练的策略,以有效地与现实世界动力学对齐。我们在三种转移方案中尽快评估了ISAACGYM到Isaacsim,Isaacgym到Genesis和Isaacgym,以及真实世界的G1人类人体机器人。我们的方法显着提高了各种动态运动的敏捷性和全身协调,与Sysid,DR和Delta动力学学习基准相比,跟踪误差减少了。尽快实现了以前难以实现的高度敏捷运动,这证明了在桥接模拟和现实世界动力学中的三角洲动作学习的潜力。这些结果表明,可以开发出更具表现力和敏捷的人形生物的有希望的SIM到真实方向。
