我们基于从 Gutzwiller 平均场假设得出的作用的正则量化,开发了 Bose-Hubbard 模型的量子多体理论。我们的理论是对弱相互作用气体 Bogoliubov 理论的系统推广。该理论的控制参数定义为 Gutzwiller 平均场状态之上的零点涨落,在所有范围内都保持很小。该方法在整个相图中提供了准确的结果,从弱相互作用超流体到强相互作用超流体,再到 Mott 绝缘相。作为具体应用示例,我们研究了两点相关函数、超流体刚度、密度涨落,发现它们与可用的量子蒙特卡罗数据具有定量一致性。特别是,恢复了整数和非整数填充时超流体-绝缘体量子相变的两个不同普适性类。
然而,超导体中的二极管效应可能由几种不同的机制引起,具体取决于器件的成分和结构。几个研究小组已经研究了 SDE 理论。例如,通过使用平均场、Bogoliubov-de Gennes (BdG) 和 Ginzburg-Landau 理论,最近提出了无结块体超导体中的 SDE 以及其约瑟夫森结版本的理论见解。然而,另一个重要概念是邻近耦合,其中约瑟夫森结是在高自旋轨道耦合材料之上制造的;在这里,反演对称性不仅被器件的异质成分破坏,还被自旋轨道耦合项破坏;在这里,破坏 TRS 所需的磁场位于器件平面内。近年来,自旋轨道耦合非中心对称超导体中 SDE 的有趣实验演示已经复兴并刺激了非互易超电流传输的理论研究。然而,SDE 的想法已经存在了几十年。
在这个项目中,将提供对黑洞,其形成和黑洞事件的预先知识。将引入霍金辐射,并发现其存在和证明其存在。量子场理论是理解证据所必需的,因此给出了量子场理论的少量描述。将概述解释Hawking证明所需的Bogoliubov转换,并指出它的含义。还讨论了鹰辐射现象的物理意识的方式。还使用无毛定理介绍了黑洞信息悖论,并概述了其建议的决议,最后简要描述了其含义。关键字:黑洞,鹰辐射对悖论1。恒星的生命和黑洞的形成宇宙充满了物质。氦气和氢气的气体云层以巨大的质量和不同的密度在宇宙周围漂浮。达到阈值密度后,每个粒子上云的净重力都克服了每个单独粒子的动量,从而导致气体云的所有颗粒被吸引到气体云系统的重心。由于气云的所有颗粒由于重力在每个粒子上的重力而汇合在一起,并导致核裂变。这种核裂变在向外运动中释放出能量,并因此抵消了大量引力的向内拉力。这是形成恒星的方式。
与费米尼类似物相比,当对角二二骨汉密顿人的对角线形式[3]时,会出现其他复杂性,这是由于必须小心保留玻色子通勤关系的事实而引起的。这特别意味着不能通过标准的统一转换对对角线进行对角线,而是通过满足t -1 p =ττz t†pτz的统一矩阵,而τz则是Nambu空间中的第三个Pauli矩阵。在参考文献中详细描述了对角度化此类汉密尔顿人的一般程序。[3]。简而言之,该过程如下:(1)在h sp = k†p k p的形式上写入Hamiltonian H SP,其中k p是遗传学上的上对角线矩阵。从数值上讲,可以通过cholesky的分解来实现此步骤。(2)通过某种标准数值方法对角线化Hermitian矩阵kPτz k†p。(3)在矢量e p =(ϵ lp,ϵ l -1,p,。。。,ϵ1 p,−ϵ1 p, - ϵ2 p,。。。, - ϵ lp),并将相应的2 L特征向量w ip存储为矩阵w p的列。(4)构造对角线矩阵D P = P
1 简介:二次量子化、相互作用电子、哈伯德模型及其派生模型 1 横向磁场中的量子伊辛模型:通过 Jordan 1 Wigner、Fourier 和 Bogoliubov 变换的精确解。量子相变和临界性。有序与无序。对偶性。激发和畴壁。 1 纠缠熵:面积定律和对数发散。 3 半整数自旋链:海森堡反铁磁体、Lieb-Schultz-Mattis 1 定理、有序与无序、Goldstone 玻色子、Mermin-Wagner 定理、通过坐标 Bethe 假设的精确解。 4 整数自旋链:Haldane 猜想、Affleck-Kennedy-Tasaki-Lieb 模型、MPS(矩阵积态)和张量网络简介。无间隙边缘模式和对称保护拓扑序。 5 自由费米子系统的拓扑分类:拓扑绝缘体和超导体的周期表,Su-Schriefer-Heeger模型和Kitaev的量子线:拓扑简并和马约拉纳边缘模式。 6 高维自旋模型,自旋液体,规范理论和Kitaev的环面代码模型,拓扑序和任意子 还将有一个小组项目,可以选择为文献综述(例如量子霍尔效应,Levin-Wen弦网络模型,拓扑绝缘体,
引言。目前,人们对拓扑非平凡系统中的凝聚态物理学有着浓厚的兴趣。在过去的二十年里,人们做出了巨大的努力来寻找新型拓扑量子物质,如拓扑绝缘体[1,2]、拓扑半金属[3]或拓扑超导体[4]。拓扑相通常与两个能带相交的能带结构中的孤立奇点有关[5,6]。在拓扑超导体的情况下,零能量的Bogoliubov准粒子(称为Majorana零模式)可用于拓扑保护的量子计算[4]。此类系统中零能量模式的存在受到拓扑保护[7],最近已在超导三端结实验中得到证实[8]。实际上,超导弱链接中的安德烈夫束缚态 (ABS)(也称为约瑟夫森结)也被提议用于实现量子比特 [9,10]。如果将结嵌入射频超导量子干涉装置 (SQUID),则可以轻松调整 ABS,并且可以通过微波 [11 – 14]、隧穿 [15] 和超电流谱 [16] 进行实验访问和相干操控。最近,据预测,由传统超导体制成的多端约瑟夫森结 (MJJ) 将表现出四 [17 – 22] 和三 [23 – 27] 引线的非平凡拓扑。在这样的系统中,不需要奇异的拓扑材料,尽管多端拓扑纳米线也已被讨论过 [27]。在 MJJ 中,两个终端之间的量化跨导是整数值陈数的表现形式 [17,20,21,27]。或者,弗洛凯在周期驱动的约瑟夫森系统中陈述,其连通性比
量子力学 (2ECTS) Kris Van Houcke 1. 回顾量子力学的基础,量子力学的假设,薛定谔/海森堡/相互作用图像,两能级系统和布洛赫球 2. 量子力学与经典力学的关系,费曼路径积分表示 3. 多体系统,二次量化,多粒子系统的路径积分表示,量子蒙特卡罗和费米子符号问题 4. 弱相互作用玻色子的波格留波夫理论 5. 纯态与混合态,密度算子,约化密度算子,纠缠,(可能是:EPR悖论和贝尔定理) 6. 开放量子系统,算子和表示,量子测量,林德布拉德表示,波恩-马尔可夫主方程 量子信息论简介 (2ECTS) Alain Sarlette、Harold Ollivier 1. 状态:密度矩阵、内积、范数、保真度、 TVD、状态分解(Schmidt、Pauli)2. 算子(1):酉表示、CPTP 映射、其他表示(大酉/Kraus/Choi)3. 算子(2):Pauli 算子、作用于算子代数的通道、从交换关系中恢复子系统、Clifford 层次结构、受限操作类(LOCC、LO1WCC)4. 测量:射影测量、更新规则、POVM、非交换/联合可测性5. 纠缠:纠缠测量、纠缠单调、纠缠提炼、使用纠缠(隐形传态、交换、门隐形传态、与 Choi 的关系、超密集编码)6. 状态辨别:假设检验、熵、Holevo、条件熵/互信息/强子可加性、数据处理不等式、相对熵、平斯克
在过去的几十年中,空腔量子电动力学领域的进步以及电路量子电动力学为强烈和共计耦合到光模式的物质系统铺平了道路。这些实验突破使实现和研究范式理论模型(如Rabi,Tavis-Cummings和Dicke模型)在实验室中具有强烈的相互作用[4-11]。使用这些工具,一个基本问题是光与物质之间的相互作用如何相互影响,改变了分离的(潜在复杂)单个部分的特性,例如可观察结果,局部相互作用或相变的位置[12-22]。范式的光丝系统之一是Dicke模型,在光和物质部分上的设置最少[23,24]。该模型由n个单个自旋-1 / 2颗粒组成,这些粒子单独耦合到单个空腔模式。hepp和lieb显示了热力学极限n→∞可以通过Bogoliubov转换来分析求解,并具有从正常到超级阶段的二阶相变,其基态下具有非变化的光子密度[24]。虽然DICKE模型的一部分是由任意数量的旋转组成的,但在没有光结合相互作用的情况下,它会分解为非相互作用的问题,因为局部自由度仅通过腔体耦合,从而使其易于解决。一个典型的例子是Dicke-asision模型,其中最近的邻居旋转之间存在额外的ISININ相互作用。首先,在第二节。sec。sec。To make the composite system more interesting, various generalizations for the Dicke model were proposed and discussed, like more complex local spin structures [ 25 ] , multi-mode cavities [ 24 , 26 , 27 ] , non-Hermitian generalizations [ 28 ] , open systems [ 29 , 30 ] , altered light- matter interactions [ 31 , 32 ] , non-equilibrium systems [ 33 ] , and added matter-matter interac- tions between the spins [ 2 , 34,35]。使用均值场和自由度自由度的经典近似,Zhang等人。在物质部分[2]中找到了包括抗铁磁相的抗铁磁相互作用的丰富相图,其中包括抗铁磁相和顺磁相[2]。然而,使用定量数值技术,在位置以及1D中的顺序中发现了相变的偏差[1,36]。在这项工作中,我们通过考虑对物质部分的更具概括的设置来详细说明,包括长距离跳跃和关联过程,并将其耦合到单个光模式。这使我们能够研究光 - 物质和物质 - 耦合引起的相关性与效果之间的相互作用。将自己限制在与消失的光质相互作用的情况下,我们通过将其映射到有效的dicke模型来建立了该模型低能部分的分析解决方案。这使我们能够在分析的非抗抑制阶段研究这种广义的dicke模型的低覆兴激励,包括缝隙的截止,可能诱导二阶相变。本文的结构如下。2我们介绍了一般框架工作,包括广义模型和推导有效DICKE模型的先决条件。后者是在亚基中完成的。2.2和2.3,首先给出一些物理直觉,如何解决系统,然后在操作员级别上进行一般推导。3,我们将一般发现应用于Dicke-asising模型,作为示例性情况。我们比较了在热力学极限中获得的结果,与有限系统上的精确对角线化(ED)和串联扩展方法PCST ++ [3]相比,以增强有效模型的有效性。sec。 4我们得出结论,并为潜在的研究方向提供前景。sec。4我们得出结论,并为潜在的研究方向提供前景。
bcs理论:探索其在高温超导体中的基本原理和挑战Bardeen-Cooper-Schrieffer(BCS)理论是凝聚态物理学的一个关键概念,为自1957年以来提供了超导性的显微镜解释。这种现象涉及在临界阈值以下的温度下进行电力无电的材料。BCS理论的关键在于库珀对的形成,尽管它们是自然的排斥,但它们是一对电子。在低温下,这种配对是通过声子介导的吸引力在超导体的晶格结构中促进的。基态和首先激发状态之间的能量差距在维持超导性中起着至关重要的作用。BCS理论在各个领域都具有深远的影响,包括使用MRI机,粒子加速器和量子计算的医学成像。它的影响超出了对核物理,天体物理学和中子星研究的超导性,赢得了创作者约翰·巴丁(John Bardeen),莱昂·库珀(Leon Cooper)和罗伯特·施里弗(Robert Schrieffer),1972年诺贝尔物理学奖。然而,BCS理论面临着在1980年代发现的高温超导体的挑战。这些材料在温度下表现出超导性能,远远高于BCS理论的预测,这表明了另一种机制。研究人员正在探索理论,例如BCS-BEC交叉和磁波动,以了解这些现象。非常规超导体由于其不同的对称特性而构成挑战。这导致了新的理论模型的发展,这些模型试图扩展或补充原始的BCS框架。超导性的应用导致了MRI和粒子加速器以外的技术进步,包括材料科学方面的重大发展。bcs理论是理解超导性的基本框架,尽管局限性地解释了高温和非常规的超导性,但仍对其性质和指导技术创新提供了深刻的见解。该理论将超导性描述为由cooper Pairs Pairs Pairs的核物理学引起的微观效应。Bardeen,Cooper和Schrieffer于1957年提出了BCS理论,于1972年在1972年获得了诺贝尔物理学奖。在1950年代中期,超导性的势头取得了进展,从1948年的1948年论文提出的一致性是由于现象学方程而提出的一致性。温度和压力具有显着的关系,温度受压力变化的强烈影响。虽然BCS理论被广泛接受为超导性的基本解释,但人们认为其他因素正在发挥作用,有助于这种现象。这些潜在的机制尚未完全理解,甚至可能在低温下控制某些材料的行为。在极低的温度下,费米表面附近的电子变得不稳定,从而形成了库珀对。在常规超导体中,这种吸引力通常归因于电子 - 武器相互作用。这种现象首先是由库珀观察到的,他证明了结合是在有吸引力的潜力的情况下发生的,无论其强度如何。相比之下,BCS理论仅要求潜在具有吸引力,而无需指定其起源。该框架将超导性解释为库珀对凝结产生的宏观效应,库珀对表现出了一些玻色子性能。在足够低的温度下,这些对可以形成大型的玻色网凝结物。通过使用Bogoliubov变换,尼古拉·博格洛博夫(Nikolay Bogolyubov)也独立地开发了超导性的概念。在许多情况下,通过与振动晶体晶格(Phonons)的相互作用,间接引起配对所需的电子之间的有吸引力的电子相互作用。此过程涉及一个吸引晶格中附近正电荷的电子,导致另一个电子移入较高的正电荷密度区域。随着这些电子的相关性,它们会形成高度集体的冷凝物。打破一对所需的能量与超导体内所有对中的所有对所需的能量密切相关,从而使外力更难破坏配对。这种集体行为对于理解超导性至关重要,因为它使电子能够抵抗外部影响并保持通过超导体的恒定流动。BCS理论从假设电子之间的相互作用的假设开始,这可以克服库仑排斥。高温超导性的行为很复杂,尚未完全理解。虽然这种吸引力通常是间接的,这是由电子晶格耦合引起的,但基本机制对于理解理论的结果并不是至关重要的。实际上,在没有这种相互作用的系统中观察到了库珀对,例如同质磁场下的费米亚的超速气体。bcs理论提供了金属中量子力学多体状态的近似,从而通过有吸引力的相互作用形成了库珀对。在正常状态下,电子独立移动;但是,在BCS状态下,由于吸引力的潜力降低,它们被绑定在一起。形式主义是基于波函数的变异ansatz,后来证明在对的密集极限中是精确的。尽管取得了重大进展,但稀释和致密政权之间的跨界仍然是一个空旷的问题,吸引了超低气体领域的关注。BCS理论的关键方面包括带隙,临界温度和同位素对超导性的影响的证据。测量值,例如临界温度附近的热容量的指数增加支持超导材料中能量带镜的存在。随着温度升高的结合能的降低表明电子与晶格之间的相互作用逐渐减弱。必须通过改变所有其他对的能量来打破一个能量的差距。与普通金属不同,在正常金属中,电子状态可以随着少量的添加能量而变化,当超导性停止时,该能隙在过渡温度下消失。BCS理论提供了表达式,以表明差距在费米水平上以吸引力和单粒子密度的强度生长。它还解释了当材料进入超导状态时状态的密度如何变化,而在费米水平上没有电子状态。在隧道实验和超导体的微波反射中,最直接观察到了这种能隙。BCS理论预测了能量差距对温度的依赖性,包括其在零温度下的通用值。在1950年,两个独立的小组在使用不同的汞同位素时发现了超导性的同位素效应。这一发现很重要,因为它揭示了同位素的选择可能会影响材料的电性能和晶格振动的频率。同位素效应表明,超导性与晶格的振动之间的联系,后来成为BCS理论的关键组成部分。由其中一个组进行的Little -Parks实验提供了早期的迹象,表明库珀配对在超导性中的重要性。通过对二吡啶镁等材料等材料的研究进一步探讨了这一原理,该材料被认为是BCS超导体。BCS理论发展中的关键里程碑包括John Bardeen,Leon Cooper和John Schrieffer的作品,后者发表了有关库珀对中电子超导性显微镜理论和电子结合能的论文。他们的工作为我们理解超导性及其与晶格振动的关系奠定了基础。后来的发现,例如Bednorz和Müller在1986年的发现,揭示了某些材料中高温超导性的潜力。最近,研究继续探索这种现象,并在2011年报告了值得注意的发现。BCS理论是理解超导性的基石,它源于W. A.和Parks R.D.在1962年发表的超导缸中量子周期性的观察。这一理论是由莱昂·库珀(Leon Cooper),约翰·巴丁(John Bardeen)和J.R. Schrieffer在1950年代后期的《绑定电子对的开创性论文and syproscopic理论》中进一步开发的。他们的工作为理解某些材料在比温度以下时如何表现出零电阻的基础奠定了基础。Schrieffer的书《超导性理论》(1964)以及其他文本,例如廷克汉姆(Tinkham)的“超导性概论”和de gennes的“金属和合金的超导性”,提供了对BCS理论的全面解释。该理论已被广泛接受,并且仍然是研究的主题,其应用在包括量子材料和超导体 - 绝缘体跃迁在内的各个领域。对该主题的著名作品的引用包括库珀的“堕落的费米气体中的绑定电子对”,巴尔丁的“超导性显微理论”和“超导性理论”。BCS理论已经进行了广泛的研究,许多研究人员为其发展做出了贡献。体育学提供了超导性的基础知识的介绍,而舞蹈类比为Bob Schrieffer所描述的BCS理论提供了创造性的解释。超导性的研究仍然是一个积极的研究领域,并持续努力理解和应用BCS理论中概述的原则。