具有高效率的操作和清洁能量过渡。[2]与化学成分一起,分子间相互作用直接通过将分子堆积管理到晶体中来确定有机固体的功能。与单个分子[3a,b]相比,这种能量的增加导致晶体的电子结构发生变化,这打开了调整所得有机晶体(OC)的光学,电子和传输特性的可能性。然而,这种强大的间隔相互作用可确保OC的结构元素之间有效的电荷转移,进而可以通过淬火过程降低光发射性能。[3F-K]相反,通过引入氢键[3C-E]来降低该能量的降低,可保留单个分子及其光发射特性的电子特征,并扩大了分子堆积的方式,并提供了OC生长在任意表面上的控制。反过来,这些对于轻松产生有效的连贯和不连贯的光源至关重要。[1C]
摘要:三级烧伤受伤构成了重大的健康威胁。迫切需要更安全,更易于使用,更有效的技术来治疗。我们假设脂肪酸和三肽的共价结合物可以形成与伤口兼容的水凝胶,从而加速愈合。我们首先将共轭结构设计为脂肪酸 - 氨基酸1 – amonoacid2-Apartate Am- phiphiles(CN酸– AA1 – AA2 – D),它们有可能根据每个小节的结构和特性自组装成水凝胶。然后,我们通过使用两种FMOC/TBU固相肽合成技术,基于该设计生成了14种新型结合物。我们通过串联质谱和核磁共振光谱验证了它们的结构和纯度。在低浓度(≥0.25%w / v)中形成13个结合物,但是C8酸性-ILD-NH 2显示出最佳的水凝胶化,并进一步研究了。扫描电子显微镜表明,C8酸性NH 2形成纤维网络结构和迅速形成的水凝胶,这些水凝胶在磷酸盐缓冲盐水中稳定(pH 2-8,37°C),这是一种典型的病理生理条件。注射和流变学研究表明,水凝胶表现出重要的伤口治疗特性,包括注射性,剪切稀疏,快速再凝胶和与伤口兼容的力学(例如Moduli g'''和g',g',〜0.5-15 kpa)。C8酸-ILD-NH 2(2)水凝胶显着加速了C57BL/6J小鼠上三级烧伤伤口的愈合。在一起,我们的发现证明了CN脂肪酸-AA1 – AA2-D分子模板的潜力,以形成能够促进三级燃烧的伤口愈合的水凝胶。
对更高的结构和工程奇迹的需求需要具有出色强度的材料。纤维增强聚合物(FRP)材料被广泛用作外部增强剂,以增强混凝土成员的结构性能。然而,对经受扭转的加强成员的研究直到最近才引起了很大的关注。在易于地震的地区,了解扭转故障对于确保结构安全至关重要。frp(纤维增强聚合物)复合材料广泛用于加强和修复混凝土结构,因为它们的高强度重量比,耐腐蚀性,易于施用和耐用性。它们通常用作外部粘合钢筋,以提高结构构件的弯曲,剪切和轴向能力。几乎所有工程结构,包括房屋,工厂,发电厂和桥梁,在整个过程中都会经历退化或恶化。环境因素,例如钢的腐蚀,随着年龄的增长,温度变化的逐渐损失,冻融周期,重复的高强度负荷,与化学物质和盐水接触以及暴露于紫外线辐射是这些恶化的主要原因。除了这些环境因素外,任何建筑退化的重要因素是地震。需要创建有效的结构改造技术来解决此问题。因此,关注土木工程基础设施的性能至关重要。有两种解决结构改造问题的解决方案:修复/改造或拆除/重建。如果升级是一种实用的替代方案,则旧设施的总替换可能不是一个经济有效的选择,而是可能成为日益增长的财务负担。由于降解,衰老,缺乏维护,强烈的地震以及当前设计标准的变化,桥梁,建筑物和其他土木工程结构的损害造成的损害。以前,通过使用新材料卸下和更换质量或损坏的混凝土或//和钢加固,从而完成了钢筋混凝土结构(例如柱,梁和其他结构元素)的改造。然而,随着新的高级复合材料(例如纤维增强聚合物(FRP)复合材料),现在可以使用外部粘结的FRP复合材料轻松有效地加强混凝土成员
摘要:温度和湿度耦合对粘合关节的故障特性具有比单个因素更重要的影响,并且对此没有足够的研究。在本文中,选择具有强韧性结构粘合剂的关节以在40℃和60℃的温度下对年龄的关节进行240 h,480 h和720 h的实验分析,湿度为95%和100%。顺序双脚的模型用于适合关节的吸水,并且比较得出粘合剂的吸水符合Fick的定律。准静态拉伸试验表明,关节的机械性能的降低与环境中的水分含量正相关,而后温度固化和氢化塑性的竞争机制则导致较小的失败强度和能量的实验结果一致。宏观故障切片和扫描电子显微镜(SEM)图像的组合得出,关节的故障模式从内聚力的失败转变为随着衰老时间的增加而变化。此外,预计关节疲劳测试的可靠性分析有望为车辆使用温度范围内的粘结技术的生命设计提供指导。
权利声明:这是作者在《国际黏附和粘合剂杂志》上接受发表的作品版本。出版过程导致的变更(例如同行评审、编辑、更正、结构格式和其他质量控制机制)可能不会反映在本文档中。自提交出版以来,可能已对本作品进行了更改。最终版本随后发表在《国际黏附和粘合剂杂志》上,[105, , (2020-12-04)] DOI: 10.1016/ j.ijadhadh.2020.102784 。© 2020。此手稿版本根据 CC-BY-NC-ND 4.0 许可证提供 http:// creativecommons.org/licenses/by-nc-nd/4.0/
许多过程参数可能会影响聚合物基质复合结构中粘合键关节的性能。除了与表面制备相关的参数列表外,这些参数还可以包括(但不限于):粘合剂年龄,粘附年龄(可以直接与贴材中的固定水分直接相关),粘合剂的粘合时间和固化特性(包括坡度,包括坡道,气候速率和持有持续时间)。在评估这些潜在关键过程参数的效果方面,就测试方法而言存在几种选项。lap剪切可能是最被考虑的测试方法,这主要是由于其易用性。母体面板的制造很简单,尽管已知粘合区边缘的粘合剂在关节的自由边缘处的应力浓度至关重要[1,2]。此外,测试是具有成本效益的,由于不需要专门的固定,测试持续时间很短,并且数据收集需求最少(通常仅记录故障负载)。然而,膝盖剪切测试仅验证短期键强度,并且是长期耐用性的差[3-6]。
Jean-Baptiste Orsatelli、Eric Paroissien、Frederic Lachaud、Sébastien Schwartz。航空航天复合材料结构的粘合冲洗修复:建模策略综述及其在修复优化、可靠性和耐久性方面的应用。复合材料结构,2023,304,第 116338 页。10.1016/j.compstruct.2022.116338。hal-03855537
Jean-Baptiste Orsatelli、Eric Paroissien、Frederic Lachaud、Sébastien Schwartz。航空航天复合材料结构的粘合冲洗修复:建模策略综述及其在修复优化、可靠性和耐久性方面的应用。复合材料结构,2023 年,304,第 116338 页。10.1016/j.compstruct.2022.116338。hal-03855537
Jean-Baptiste Orsatelli、Eric Paroissien、Frederic Lachaud、Sébastien Schwartz。航空航天复合材料结构的粘合冲洗修复:建模策略综述及其在修复优化、可靠性和耐久性方面的应用。复合材料结构,2023,304,第 116338 页。10.1016/j.compstruct.2022.116338。hal-03855537
Jean-Baptiste Orsatelli、Eric Paroissien、Frederic Lachaud、Sébastien Schwartz。航空航天复合材料结构的粘合冲洗修复:建模策略综述及其在修复优化、可靠性和耐久性方面的应用。复合材料结构,2023,304,第 116338 页。10.1016/j.compstruct.2022.116338。hal-03855537