我们报告了一种通用方法,用于提高软烤 BCB 键合堆栈中键合后晶圆对准精度和 BCB 厚度均匀性。该方法基于新型 BCB 微柱,在键合过程中充当锚点。锚点结构成为键合界面的自然组成部分,因此对键合堆栈的光学、电气和机械性能的干扰最小。我们研究了固定锚点密度和各种锚点高度与粘合剂 BCB 厚度的关系,这些性能也不同。我们证明了对准精度可以提高大约一个数量级,并且该工具可以接近基本的键合前对准精度。我们还证明了该技术对 2 – 16 μ m 的大范围 BCB 厚度都有效。此外,我们观察到,对于 8 – 16 μ m 范围内的 BCB 厚度,厚度不均匀性降低了 2 – 3 倍。
• 美国陆军,以数据科学为驱动的动态预期标准,以加速粘合装甲高负载率粘合剂的创新和转型,该团队致力于开发国防部第一个动态标准,采用嵌入式数据科学和可更新的军事技术驱动因素作为装甲粘合剂的资格指南。MIL-STD-3059 通过促进粘合装甲组件的复杂弹道响应与普遍可翻译和商业相关的准静态机械性能之间的数据驱动相关性,重新定义了传统观点。这种颠覆性方法将产品资格认证的时间和成本障碍减少了三分之二,并激励了高风险和高回报的创新。团队成员包括 Gerard T. Chaney、Daniel C. Deschepper、David P. Flanagan、Robert E. Jensen 和 Charles G. Pergantis。
对于应变测量仪器,我们大量使用双传感器应变传感器 (DSST,由乔治亚州罗斯威尔 30075 的 Measurements Technology, Inc. 生产)。这是一种夹式装置,有效测量长度为 1 英寸。它可以同时测量两个纵向应变,相当于背对背测量仪安装。由于担心该装置与粘合应变计相比的准确性,我们将传感器安装在长 (.75 英寸) 粘合应变计上进行测试。DSST 的结果始终与实验误差范围内的应变计结果相同。由于这些比较结果一致,我们已采用该传感器进行常规单轴拉伸试验,从而大大节省了时间和金钱。
futuraautomation.com › images › f... PDF 2018 年 12 月 11 日 — 2018 年 12 月 11 日 军用车辆的汽车电子 ... 5 线电阻式触摸屏,光学粘合到防眩光、防反射微网滤波器,用于 EMI。 .. 12 页
150年前,Mendeleev和Meyer的周期表开发了元素的周期表,如果对元素进行了相应的分类,则揭示了特性的财产趋势。[1,2]在周期表中的一列向下移动,通常会导致从非金属到金属的过渡。这可以很好地看到元素周期表的碳组14,其中从C,Si(Cova-Cova-Cova-Cova-Cova-Cova-Cova-Cova-Cova)到GE,SN和PB的运动导致过渡到金属基态(PB)。有趣的是,对于第15组元素,即Pnictogens,p是共价键合的,但SB和BI是(半) - 金属。这提出了有关从共价(CB)到金属粘合(MB)过渡的性质的问题。通过这项工作,我们通过讨论最近定义的“元债券” [3]到
图 2:典型球/月牙互连的简化表示 自动引线键合机于 20 世纪 80 年代初推出。当时,大多数互连都是使用铝线制作的。随着对高可靠性需求的增加,金线变得更加普遍。随着封装密度的增加,引线互连键合间距减小。细间距的初始解决方案是楔形键合,因为楔形工具设计允许将引线紧密键合(并排)。 细间距互连 在更小的空间内封装更多元件的需求导致 ASIC 设计变得更加密集。人们曾认为,互连细间距封装的最佳方法是通过楔形键合。在 20 世纪 90 年代后期,典型的键合间距从约 110µm 减小到约 90µm。在此期间,平均楔形工具尖端大约是球键合毛细管工具尖端宽度的三分之一。毛细管材料缺乏支持细间距工艺的稳健性。从那时起,改进的材料使细间距设计成为可能,其中尖端尺寸小于 70µm 的情况并不罕见。更小的特征、更高的密度和更多的 I/O 需要细间距。在当今的细间距环境中,任何使用楔形键合机键合的设备都可以使用球焊设备更快地键合。图 3 和图 4 描绘了使用 1.0 mil 导线通过球焊互连的 55µm 细间距架构。
使用Tencor的HRP-250来测量轮廓。使用了来自Cabot的SS12和来自AGC的CES-333F-2.5。在将晶片粘合到粘合之前(氧化物到氧化物和面对面),将顶部晶圆的边缘修剪(10毫米),并同时抛光新的斜角。这可以防止晶片边缘在磨/变薄后突破[1]。将晶圆粘合后,将散装硅研磨到大约。20 µm。之后,通过反应性离子蚀刻(RIE)将粘合晶片的剩余硅移到硅硅基(SOI) - 底物的掩埋氧化物层(盒子)上。另一个RIE过程卸下了2 µm的盒子。之后,粘合晶片的晶圆边缘处的台阶高为3 µm。随后沉积了200 nm的氮化物层,并使用光刻和RIE步骤来构建层。此外,罪被用作固定晶片的si层的固定。必须将设备晶圆边缘的剩余步骤平面化以进行进一步的标准处理。为此,将剩余的罪硬面膜(约180 nm)用作抛光止损层。在平面化之前,将4500 nm的Pe-Teos层沉积在罪恶上。这有助于填充晶圆的边缘。在第一种抛光方法中,将氧化物抛光至残留厚度约为。用SS12泥浆在罪过的500 nm。在这里,抛光是在晶片边缘没有压力的情况下进行的。然后将晶圆用CEO 2泥浆抛光到罪。用CEO 2浆料去除氧化物对罪有很高的选择性,并且抛光在罪恶层上停止。第一种抛光方法花费的时间太长,将氧化物层抛光至500 nm的目标厚度。此外,在抛光SIO 2直到停止层后,用SS12稍微抛光了罪。最后,高度选择性的首席执行官2 -lurry用于抛光罪。结果表明,步进高度很好,但是弹药范围很高(Wafer#1)。第二种方法的抛光时间较小,并在500 nm上停在SIO 2上,而最终的抛光和首席执行官2 -slurry直至罪显示出良好的步进高度,并具有更好的罪恶晶圆范围(Wafer#2)。
摘要在这项研究中,提出了对低热稳定性临时粘合胶的优化对物理蒸气沉积(PVD)过程的优化。在各种底物上证明了Cu种子层在通过沟渠中的沉积:硅 - 硅粘合,硅玻璃键合和霉菌键合的底物。在处理过程中记录在这些底物上的表面温度远低于临时键合和去键(TBDB)材料的临界温度。本文重点介绍了PVD工艺的2.5D/3D集成电路(IC)包装中通过硅VIA(TSV)应用的创新。这些结果将在温度较低的范围明显较低的温度范围内稳健地整合具有低热稳定性的各种临时粘合粘合剂,其热稳定性低。引言临时键合和键合材料在实现薄和超薄晶圆底物的处理方面起着重要的中间作用。它为稀薄的Si Wafers提供结构和机械支撑,用于下游包装。这是因为在下游制造步骤期间,薄且超薄的基材具有高弯曲,折叠和有时断裂的趋势。因此,需要借助临时粘合粘合剂来支撑这些稀薄的底物在载体底物上[1]。这允许晶圆进行进一步的过程步骤,例如光刻,沉积等。设备晶圆通常与临时粘合涂层接触以进行支撑。在PVD过程中,金属靶标通过碰撞的热过程转化为原子颗粒。物理蒸气沉积(PVD)是TSV 2.5D/3D IC包装中铜的随后电化学沉积的关键过程步骤。这是一种以平滑表面,出色的机械性能以及对目标底物的良好粘附而闻名的先进材料处理技术。然后将这些颗粒定向到基板上,以在受控的真空环境中进行后续沉积,成核和生长。原子然后将其凝结成在底物上形成物理薄膜。这可以以两种方式进行:溅射和蒸发。在溅射过程中,将气态前体引入反应室,然后将其加速向目标加速,释放原子尺寸的颗粒以沉积到基板上。溅射技术的主要优点是由于加速