组织委员会:Maria Nadal(NIST,CCPR WG-SP),Maria Luisa Rastello(INRIM,CCPR总裁),StefanKück(PTB)和JoëleViallon(BIPM)14:15 SI的目的是什么?Annette Koo(MSL)14:35 CCU对Candela的未来兴趣。理查德·布朗(Richard Brown)(NPL,CCU)14:55对当前的烛台定义没有任何更改。武装蜘蛛(PTB)15:15对KCD定义采用锥基本面。Yoshi Ohno(NIST)15:35通过为每个人应用特定的KCD值将光度法带入个人。Gael Obein(LNE-CNAM)15:55咖啡休息时间(30分钟)16:25使用源(如白铂黑体),而不是人眼的光谱响应性,回到定义。Boris Khlevnoy(VNIIOFI)16:45基于光子的CandelaStefanKück(PTB)和Angela Gamouras(NRC)17:05 SI中三类单元的建议。John Lehman(NIST)17:25发言人小组讨论17:50总结说明Maria Luisa Rastello(INRIM,CCPR总裁)18:00 EndJohn Lehman(NIST)17:25发言人小组讨论17:50总结说明Maria Luisa Rastello(INRIM,CCPR总裁)18:00 End
进一步感谢:Malte Zieher(Bündnis Bürgerenergie);Erik Christiansen(EBO Consult);Johan Hamels(Ecopower);Rainer Hinrichs-Rahlwes(欧洲可再生能源联合会);Vasilios Anatolitis 和 Jan George(弗劳恩霍夫系统与创新研究所);Molly Walsh(欧洲地球之友);Ana Amazo(Guidehouse);Eco Matser(Hivos);John Farrell(地方自力更生研究所);Namiz Musafer(综合发展协会);David Renné(国际太阳能协会);Jan-Gerald Andreas(德国复兴信贷银行);Ousmane Ouattara 和 Ibrahim Togola(马里民众中心 Nyetaa);Elizabeth Doris(国家可再生能源实验室);Leire Gorroño-Albizu(北欧可再生能源民众中心);Lea Ranalder(REN21); Harry Andrews(Renew);Josh Roberts 和 Dirk Vansintjan(REScoop.eu);Glen Estill(Sky Generation Inc.);Luke Wilkinson(Sustainability Victoria);Patrick Devine-Wright(埃克塞特大学);Paul Gipe(Wind-Works);Anna Leidreiter(世界未来委员会);Timo Karl(世界风能协会);Sergio Oceransky(Yansa Group);Melani Furlan、Lin Herenčić 和 Boris Pavlin(Zelena energetska zadruga);以及 Diala Hawila、Emanuele Bianco 和 Costanza Strinati(IRENA)。
Charles J. Marsh 1† * *,Edgar C. Turner 2,本杰明·旺·布隆德3,鲍里斯·邦加罗夫4,萨宾5.6,雷迪·克鲁兹7,维多利亚·坎普9,索尔·米尔恩6,戴维·T·米洛多夫斯基12, b 4,24,David Johnson 11,Pavel Kratina 9,资深Malhi 16,Norse Majalap 22,Nicholas 19,Stephen J. Rossier 9, 12,罗伯特·M·勃起18,欧文TCharles J. Marsh 1† * *,Edgar C. Turner 2,本杰明·旺·布隆德3,鲍里斯·邦加罗夫4,萨宾5.6,雷迪·克鲁兹7,维多利亚·坎普9,索尔·米尔恩6,戴维·T·米洛多夫斯基12,b 4,24,David Johnson 11,Pavel Kratina 9,资深Malhi 16,Norse Majalap 22,Nicholas 19,Stephen J. Rossier 9, 12,罗伯特·M·勃起18,欧文T
代表论文: 1. Yongqing Cai、Gang Zhang、Yong-Wei Zhang,单层 MoS 2 纳米带中极性反转的稳健载流子迁移率。J. Am. Chem. Soc. 136, 6269−6275 (2014)(ISI 统计的化学类高被引论文) 2. Yongqing Cai、Qingqing Ke、Gang Zhang、Boris I. Yakobson 和 Yong-Wei Zhang,磷烯中的高度流动原子空位。J. Am. Chem. Soc. 138, 10199-10206 (2016) 3. Yongqing Cai、Qingqing Ke、Gang Zhang、Yuan Ping Feng、Vivek B. Shenoy 和 Yong-Wei Zhang,磷烯的巨大声子各向异性和不寻常的非谐性:层间耦合和应变工程。Adv. Funct. Mater. 25, 2230-2236 (2015) (被选为期刊封面) 4. 袁家仁, 陈元平, 谢月娥, 张晓宇, 饶德伟, 郭彦东, 严晓红*, 冯元平*, 蔡永清*, 过渡金属二硫属化物中具有可调谐 Kubo 能隙和电荷注入的挤压金属液滴。过程。国家。阿卡德。科学。 USA 117, 6362-6369 (2020) 5. Devesh R. Kripalani、Yongqing Cai*、Jun Lou 和 Kun Zhou*,强边缘应力
由于欧洲在其东部边界对其领土完整性和正在进行的冲突的威胁越来越多的威胁标志着,因此必须重新评估和强化其国防能力。最近的事态发展暴露了欧洲国防部队和工业的关键脆弱性(例如,网络威胁;弹药生产的容量限制;以适当的数量,时间和质量提供尖端的武器系统;大规模生产)。这些因素对改变全球联盟的重大依赖而突显了这些。由于现在已经充分消耗了十年的和平股息,因此欧洲人需要快速采取行动,以满足其对高级国防设备的需求,其数量和质量适当。在德国,现任国防部长鲍里斯·皮斯托里乌斯(Boris Pistorius)公开强调了这一紧迫性,以至于德国必须在2029年“战斗就绪”。1这不仅需要德国人的加速转型,还需要扩展欧洲国防工业,而且还需要强大的政治意愿和团结,以便在所有有关的欧盟成员国中对政治框架,过程和决策的改革进行改革,建立在北大西洋地区组织(NATO)设定的标准,框架和要求的基础上。尽管欧盟成员国与欧洲委员会,欧洲核心非欧盟安全合作伙伴(如挪威,英国和瑞士2)以及像美国这样的盟友在此过程中发挥关键作用,在整个过程中都需要始终参与和咨询。
由于欧洲在其东部边界对其领土完整性和正在进行的冲突的威胁越来越多的威胁标志着,因此必须重新评估和强化其国防能力。最近的事态发展暴露了欧洲国防部队和工业的关键脆弱性(例如,网络威胁;弹药生产的容量限制;以适当的数量,时间和质量提供尖端的武器系统;大规模生产)。这些因素对改变全球联盟的重大依赖而突显了这些。由于现在已经充分消耗了十年的和平股息,因此欧洲人需要快速采取行动,以满足其对高级国防设备的需求,其数量和质量适当。在德国,现任国防部长鲍里斯·皮斯托里乌斯(Boris Pistorius)公开强调了这一紧迫性,以至于德国必须在2029年“战斗就绪”。1这不仅需要德国人的加速转型,还需要扩展欧洲国防工业,而且还需要强大的政治意愿和团结,以便在所有有关的欧盟成员国中对政治框架,过程和决策的改革进行改革,建立在北大西洋地区组织(NATO)设定的标准,框架和要求的基础上。尽管欧盟成员国与欧洲委员会,欧洲核心非欧盟安全合作伙伴(如挪威,英国和瑞士2)以及像美国这样的盟友在此过程中发挥关键作用,在整个过程中都需要始终参与和咨询。
雅克-埃里克·戈滕贝格、1.2 奥罗尔·肖迪尔、1.2 伊夫·阿伦巴赫、3.4 阿尔塞纳·梅基尼安、5 扎希尔·阿莫拉、6.7 帕特里斯·卡库布、4.8 迪维·科内克、9.10 埃里克·哈楚拉、11.12 皮埃尔·夸蒂尔、13.14 伊莎贝尔·梅尔基、15.16 克里斯托夫·里切斯、17.18 拉斐尔·塞罗尔、19.20 本杰明·特里尔、4.21 瓦莱丽·德沃谢尔-彭塞克、9.10 朱利安·亨利、19.20 Marc Gatfosse、22 Laurence Bouillet、23 Emeline Gaigneux、24 Vincent Andre、24 Gildas Baulier、25 Aurélie Saunier、25 Marie Desmurs、26 Antoine Poulet、27 Mathieu Ete、28 Boris Bienvenu、27 Marie-Elise Truchetet、18、29 Martin Michaud、30 Claire Larroche、31 Azeddine Dellal、32 Amélie Leurs、33 Sebastien Ottaviani、34 Hubert Nielly、35 Guillaume Vial、36 Roland Jaussaud、37 Bénedicte Rouvière、38 Pierre-Yves Jeandel、39 Aurelien Guffroy、2、40 Anne-Sophie Korganow、2、40 Mathieu Jouvray、35 Alain Meyer、1.2 Emmanuel Chatelus、1.2 Christelle Sordet、1.2 Renaud Felten、1.2 Jean Sibilia、1.2 Samira Litim-Ahmed-Yahia、1 Jean-Francois Kleinmann、1.2 Xavier Mariette 19.20
光帆动力学和多普勒阻尼 指导老师:Boris Kuhlmey 联合指导老师:Martijn de Sterke 电子邮件联系方式:boris.kuhlmey@sydney.edu.au 大挑战:基本定律和宇宙;“突破摄星”大挑战基金 半人马座阿尔法星系统是距离太阳最近的恒星系统。由于它距离我们超过 4 光年,使用现有技术需要花费数千年才能到达那里。“突破摄星”是一个令人兴奋且雄心勃勃的项目,旨在缩短这个漫长的时间框架。计划使用 100 GW 地球激光将表面积为 10 平方米、质量为 1 克(包括有效载荷)的帆加速到光速的 20%。以这个速度,大约需要 25 年才能到达半人马座阿尔法星系统并将信号发回地球。要使这一目标成为现实,必须克服许多实际和概念上的挑战。其中之一就是帆的稳定性。激光束从来都不是完美的,因此激光加速帆不可避免地会导致侧向运动和扭矩,从而导致帆偏离。必须通过自我校正的帆设计来克服这一问题,从而实现向目标的稳定运动。我们最近对二维运动进行了理论分析,并建立了原理证明,现在正在将其完全三维化。我们有许多理论和数值项目,需要理论力学、狭义相对论、光学和电磁学的方法,旨在确定帆表面的详细光学特性、其运动以及帆结构的概念设计。
国际咨询委员会 Adriana Velazquez 世界卫生组织,瑞士 Berumen Alexander Pogrebnjak 苏梅国立大学 Bogdan Simionescu 罗马尼亚科学院 Boris Gorshunov 莫斯科物理技术学院,俄罗斯 Emil Cebanu Nicolae Testemitanu 摩尔多瓦共和国国立医科和药学大学 Franz Faupel 基尔大学材料科学研究所,德国 Gert Baumann 柏林大学 Charité 医院,德国 Hans Hartnagel 达姆施塔特技术大学,微波工程和光子学研究所,德国 Hidenori Mimura 静冈大学电子研究所,日本 Jan Linnros 皇家理工学院,瑞典 Lee Chow 中佛罗里达大学,奥兰多,美国 Lorenz Kienle 基尔大学材料科学研究所,德国 Nicolae Jula 军事技术学院,罗马尼亚 Nicolas Pallikarakis 帕特雷大学,希腊 Pascal Colpo 联合研究中心,意大利德国基尔 Ratko Magjarević 克罗地亚萨格勒布大学 Șeref Komurcu 土耳其安纳多鲁医学中心 Sergey Gaponenko 白俄罗斯国家科学院 Serghei Cebotari 德国汉诺威医学院 Thierry Pauporte 法国巴黎国立高等化学学院 Viorel Bostan 摩尔多瓦技术大学 Vladimir Fomin 德国综合纳米科学研究所 Yury Dekhtyar 拉脱维亚里加技术大学生物医学工程与纳米技术研究所
大挑战项目 光帆动力学和多普勒阻尼 指导老师:Boris Kuhlmey 联合指导老师:Martijn de Sterke 电子邮件联系方式:boris.kuhlmey@sydney.edu.au 半人马座阿尔法星系统是距离太阳最近的恒星系统。由于它距离我们超过 4 光年,使用现有技术需要花费数千年才能到达那里。突破摄星计划是一个令人兴奋且雄心勃勃的项目,旨在缩短这个漫长的时间框架。该计划是使用 100 GW 地球激光将表面积为 10 平方米、质量为 1 克(包括有效载荷)的帆加速到光速的 20%。以这个速度,大约需要 25 年才能到达半人马座阿尔法星系统并将信号发回地球。要使这个目标成为现实,必须克服许多实际和概念上的挑战。其中一个挑战就是帆的稳定性。激光束从来都不是完美的,因此激光加速帆不可避免地会导致侧向运动和扭矩,从而导致帆偏离。必须通过自我校正的帆设计来克服这一问题,从而实现向目标的稳定运动。我们最近对二维运动进行了理论分析,并建立了原理证明,现在正在将其完全三维化。我们有许多理论和数值项目可用,这些项目需要理论力学、狭义相对论、光学和电磁学的方法,旨在确定帆表面的详细光学特性、其运动以及帆结构的概念设计。这些项目由物理基金会的特别大挑战基金资助。