5 澳大利亚悉尼科技大学变革性元光学系统卓越中心,澳大利亚新南威尔士州乌尔蒂莫 2007 年,澳大利亚 * 这些作者的贡献相同。 通讯作者 igor.aharonovich@uts.edu.au 摘要 六方氮化硼 (hBN) 中的色心已经成为集成量子光子学的有吸引力的竞争者。在这项工作中,我们对在蓝色光谱范围内发射的 hBN 单个发射器进行了详细的光物理分析。发射器采用不同的电子束辐照和退火条件制造,并表现出以 436 nm 为中心的窄带发光。光子统计以及严格的光动力学分析揭示了发射器的势能级结构,这表明缺乏亚稳态,理论分析也支持这一点。潜在缺陷可以具有在 hBN 带隙下半部分具有完全占据缺陷态和在带隙上半部分具有空缺陷态的电子结构。总的来说,我们的研究结果对于理解 hBN 中新兴蓝色量子发射器系列的光物理特性非常重要,因为它们是可扩展量子光子应用的潜在来源。简介单光子发射器 (SPE) 被广泛认为是建立和部署量子通信和计算的关键推动者,这涉及按需生成高纯度单光子发射 1-3 。六方氮化硼 (hBN) 因其独特的性质而备受关注,包括以 6 eV 为中心的宽层相关带隙、高激子结合能、存在光学活性自旋缺陷以及能够承载室温 (RT) 亮 SPE 4-11 。hBN 还因其用作深紫外范围的新兴光电材料而备受关注 12 。最近,通过阴极发光 (CL) 测量发现了在蓝色光谱范围内发射的 hBN 色心,称为“蓝色发射器” 13 。这组发射器通常显示超亮、光谱稳定和窄带发射,其零声子线 (ZPL) 始终以 436 nm 为中心 13, 14 。结果表明,这些缺陷与 4.1 eV 处的特征紫外线发射密切相关 9, 14-16 。对 hBN 进行预辐照,例如在氮气气氛中进行高温退火,可产生更高的特征紫外线发射产量,从而产生更多的蓝色色心 15 。此外,在低温下,与 hBN 中的其他量子发射器相比,这些缺陷具有稳定的发射,线宽为亚 GHz,光谱扩散最小 15 。最近,两
六角硼硝酸盐(HBN)在过去十年中一直是众多研究工作的主题。是在HBN中产生光学活性缺陷,因为它们易于整合,例如在范德华(Van der Waals)异质结构及其室温光子发射。在HBN中创建此类缺陷的许多方法仍在研究中。在这项工作中,我们介绍了使用具有不同等离子体物种的远程等离子体在HBN中创建单个缺陷发射器的方法,并从统计上报告了结果。我们使用了氩气,氮和氧等离子体,并报告了由不同气体物种及其光学特性产生的发射器的统计数据。特别是,我们检查了血浆过程前后的去角质片的发射,而无需退火步骤,以避免产生不受血浆暴露引起的发射器。我们的发现表明,纯物理氩等离子体治疗是通过血浆暴露在HBN中创建光学活性缺陷发射器的最有希望的途径。
摘要:首次系统地研究了通过高真空化学气相沉积从硼氮烷中生长六方氮化硼 (hBN) 在外延 Ge(001)/Si 衬底上的过程。分别评估了 10 − 7 –10 − 3 mba r 和 900–980 ◦ C 范围内的工艺压力和生长温度对 hBN 薄膜的形貌、生长速率和晶体质量的影响。在 900 ◦ C 下,获得了横向晶粒尺寸约为 2–3 nm 的纳米晶 hBN 薄膜,并通过高分辨率透射电子显微镜图像进行了确认。X 射线光电子能谱证实了原子 N:B 比为 1 ± 0.1。通过原子力显微镜观察到三维生长模式。增加反应器中的工艺压力主要影响生长速率,对晶体质量的影响很小,对主要生长模式没有影响。在 980 ◦ C 下生长 hBN 会增加平均晶粒尺寸,并在 Ge 表面形成 3-10 个取向良好、垂直堆叠的 hBN 层。探索性从头算密度泛函理论模拟表明,hBN 边缘被氢饱和,并且有人提出,在装置的热部件上产生的 H 自由基部分去饱和是导致生长的原因。
ICP-MS被认为是硼同位素分析的强大技术。对于最苛刻的古透明应用,高分辨率的多策略ICP-MS(MC-ICP-MS)通常是选择的技术,可为硼提供精确和准确值,降低到0.2 - 0.4‰。6个四极杆ICP-MS(Q-ICP-MS),有时也将与激光消融结合使用,用于各种应用程序,对精确性和准确性的要求较小。然而,Q-ICP-MS也可以通过碰撞阻尼来消除常规测量中的许多噪声,从而产生接近理论上可能的精度的精确度。7这需要使用适当的仪器硬件和分析条件,如本申请注释中进一步讨论。因此,尽管本质上是一种顺序的仪器,但Q-ICP-MS提供的性能可以接近MC-ICP-MS。即使对于苛刻的应用程序,也可以获得足够的精度,并且分析适合于多策略仪器成本的一小部分。具有Q-ICP-MS的用途更广泛,并且不仅用于同位素比测量值,因此对同位素比率能力的欣赏可以将高质量的同位素比分析带入具有不同分析需求的实验室的范围。虽然Q-ICP-MS已成功用于硼同位素比分析8,但碰撞阻尼很少在已发表的文献中使用,因此发表的结果可能并不能反映Q-ICP-MS的真正潜力。本研究的目的是在充分利用仪器的功能时,使用Perkinelmer的Nexion®ICP-MS研究Q-ICP-MS的性能。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21 22 23 23 24 26 27 28 29 28 29 30 31 32 33 33 34 33 34 33 37 37 38 39 40 41 41 42 43 43 43 44 45 46 47 47 49 49 49 49 51 51 51 51 51 52 54 54 54 54 55 56 57 57 58 59 60 60 60 60 60
1。简介选择性激光烧结(SLS)是一种添加剂制造(AM)技术,它通过使用激光在每个计算机辅助设计(CAD)文件的切片中使用激光在粉末状聚合物材料的床上选择性地融化3D模型(图。1a)。SLS的常用聚合物是多酰胺11和12粉,使用温度范围为150-185°C [1-2]。Recently semi-crystalline PEEK of varied LS-grade powders with a melting temperature (T m ) of 343-370°C, were heated up to 380°C to be manufactured into 3D objects by a more elaborate high temperature laser sintering (HT-LS) machine and process, affording PEEK components with a glass transition temperature (T g ) of 150°C [3-4].然而,与传统处理的材料相比,这些热塑性聚合物构建的3D物体的强度通常很弱,这是因为它们由AM加工产生的固有较高的孔隙率以及在Z方向上缺乏聚合物链间连接。因此,对于250-300°C的热固性聚合物开发激光烧结过程至关重要,对航空应用使用能力。最近,将热固性二甲酰亚胺树脂与热导电碳微气泡混合在一起,以提高其激光可吸收性以成功激光烧结[5]。为了克服树脂的低粘度,标准的RTM370树脂在300°C进一步加热2-3小时,以通过促进链扩展,同时仍保持融化融化性处理性,从而提高粘度,从而避免在树脂内部反应性PEPA端盖进行广泛的交联。Initially we have attempted to print a melt-processable RTM370 thermoset polyimide oligomer powder terminated with reactive phenylethynylphthalic (PEPA) endcaps by laser sintering into a 3D objects [6], but soon realized the viscosity of the material originally developed for resin transfer molding (RTM) was too low, and the laser seemed only melted the resin without固化反应性PEPA端盖,从而导致带有空隙的标本。进一步上演的RTM370能够以LS的完整性进行3D打印样品(图1b)。
本文所含的声明、技术信息和建议截至本文发布之日均视为准确。由于产品和本文所提及信息的使用条件和方法不受我们控制,Purolite 明确声明对因使用产品或依赖此类信息而获得或产生的任何结果不承担任何责任;对于本文所述商品或提供的信息,不作任何特定用途适用性保证、适销性保证或任何其他明示或暗示的保证。本文提供的信息仅与指定的特定产品有关,当该产品与其他材料结合使用或用于任何工艺时,可能不适用。本文包含的任何内容均不构成任何专利下的实践许可,也不应被解释为侵犯任何专利的诱因,建议用户采取适当措施,确保对产品的任何拟议使用不会导致专利侵权。
量子发射器需要多种从量子传感到量子计算的应用。六角硼硝酸盐(HBN)量子发射器是迄今为止最有价值的固态平台之一,由于其高亮度,稳定性和自旋光子界面的可能性。但是,对单光子发射器(SPE)的物理起源的理解仍然有限。在这里,我们在整个可见频谱中观察到HBN中的密集SPE,并提供了混凝土和结论性的证据,表明这些SPE中的大多数可以通过供体受体对(DAPS)很好地解释。基于DAP过渡生成机制,我们计算了它们的波长指纹,与实验观察到的光致发光光谱非常匹配。我们的工作是对HBN中SPE的物理理解及其在量子技术中的应用。
六角硼硝酸盐(H-BN)由于其令人难以置信的电气,热和机械性能而近期引起了很多关注。其化学成分导致其化学惰性和无毒性,这使其与石墨材料不同(1)。过去,H-BN由于其摩擦学特性,即摩擦,润滑,表面相互作用。例如,这些特性已被理论上有效为航天器上的涂层,因为其在高温下保持其结构的能力(2,3)。对H-BN的分析较小,因为六角硼氮化硼纳米片(BNNS)也很感兴趣。正如已经发现石墨材料具有广泛的应用程序一样,BNN也是如此。bnns可以用作癌症药物递送的一种方法,因为它比基于石墨烯的材料更具生物相容性和毒性,但保留了许多相同的特性(4)。还发现了在量子信息中使用H-BN的动机,将量子通信科学用作“单光子发射器”(5)。我们对H-BN的特定兴趣源于其在高温下用作紫外光探测器的理论上的使用(6)。