窄带发射多谐振热激活延迟荧光 (MR-TADF) 发射器是一种有前途的解决方案,无需使用光学滤光片即可实现当前行业针对蓝色的色彩标准 Rec. BT.2020-2,旨在实现高效有机发光二极管 (OLED)。然而,它们的长三线态寿命(主要受其缓慢的反向系统间穿越速率影响)会对器件稳定性产生不利影响。在本研究中,设计并合成了螺旋 MR-TADF 发射器 (f-DOABNA)。由于其𝝅 -离域结构,f-DOABNA 拥有较小的单重态-三重态间隙𝚫 E ST ,同时显示出异常快的反向系统间穿越速率常数k RISC ,高达 2 × 10 6 s − 1 ,以及非常高的光致发光量子产率𝚽 PL ,在溶液和掺杂薄膜中均超过 90%。以 f-DOABNA 为发射极的 OLED 在 445 nm 处实现了窄深蓝色发射(半峰全宽为 24 nm),与国际照明委员会 (CIE) 坐标 (0.150, 0.041) 相关,并显示出较高的最大外部量子效率 EQE max ,约为 20%。
摘要:由于其二维性质及其在其较大的带隙内的托管缺陷的能力,六角硼硝酸盐正在迅速成为光子量子技术的平台,作为光子量子技术的平台,可以充当室温单个单光子发射器。在本审查论文中,我们概述了(1)硝化氢硼的结构,性质,生长和转移; (2)通过与从头算的计算相比,在光子量子技术中的应用计算中,颜色中心的颜色中心和缺陷分配; (3)用于颜色中心的电气调整和电荷控制的异质结构设备,构成了Photonic量子技术设备的基础。这篇评论的目的是为读者提供基于六角硼的光子量子量子技术的缺陷工程和装置制造进度的摘要。
我们使用密度函数理论模拟的δ-5硼单层作为碱金属(AM)和碱 - 地球金属(AEM)离子电池的阳极材料的电化学性能。探索了Δ-5硼M on洛耶木中各种金属原子(M)的电子特性,吸附,扩散速率和存储行为。我们的研究表明,电子和金属离子传输(0.493-1.117 eV)具有较高的电导率和低激活屏障,表明快速充电/放电速率。此外,发现LI,Na和K的δ-5硼单层的理论能力大于商业石墨的理论能力。AM和AEM的平均开路电压相当低,在0.34-1.30 V的范围内。我们的结果表明,δ-5硼单层单层可能是锂离子和非锂离子可充电电池中有希望的阳极材料。关键字:2D材料;吸附;储能;模拟;扩散简介
当前研究的目的是解决两个重大的环境清理问题。第一个涉及回收用过的锂离子电池(LIB),第二个涉及在水中发现的抗生素的降解。可以从也已与硼(BRGO)掺杂的用过的Libs合成还原的氧化石墨烯(RGO)。当BRGO和可见的活性BI 2 WO 6(BWO)混合在一起时,形成纳米复合材料(BWO/BR)。结构,形态和光谱特征证实了BRGO,BWO和BWO/BR纳米复合材料的序列。抗生素四环素盐酸(TCH)和环丙沙星(CIP)已通过所有三种新制成的材料进行了测试,以进行光催化降解。与BRGO结合后,发现将BWO(2.73 eV)的带隙降低至2.22 eV。在可见光下,BWO/BR表现出升高的TCH降解(93%),发现在存在阳光下会增加(95%)。在存在BWO/BR的情况下,据报道,CIP的降解分别为72%,95%和97.5%,在紫外线,可见和阳光下分别为。在存在BWO/BR的情况下,检查了反应条件,例如pH,催化剂和初始浓度的量,以降解TCH和CIP。已经发现,pH 6和8分别是TCH和CIP的理想选择。还进行了药物废水中TCH和CIP降解的研究;在存在BWO/BR和可见光的情况下,降解效率分别确定为69%和72%。在暴露于可见光之前和之后,在90分钟之前和之后,检查了在存在BWO/BR的情况下检查所有大肠杆菌,单核细胞增生菌,伤寒链球菌和金黄色葡萄球菌的所有抑制区域,在此期间,观察到接近零的抑制区域。进行了使用液相色谱 - 质谱法(LC-MS)进行研究以鉴定TCH和CIP降解的中间产物。
辐射癌症治疗是一种广泛使用的替代或补充剂,可用于外科手术的局部实体瘤,并且通常与化学疗法结合使用[1]。通常,使用高能量光子(X射线或γ砂)或加速颗粒(质子,中子或碳离子)辐照肿瘤。正常组织中梁的副作用是常见的,鼓励搜索将最大化肿瘤细胞灵敏度并允许使用较低辐射剂量的方案。在发现新的亚原子粒子,中子和核反应涉及其[2]之后不久,就提出了一种这样的方法[2]。中子是由稳定的硼同位素(10 B的核的核)非常有效地捕获的,然后由α粒子发射衰减。如果有一种在肿瘤细胞中浓缩10b的方法,则它们将被选择性地暴露于辐射,而周围的组织将被保留,因为与中子不同,α颗粒可以将组织穿透到非常浅的深度。此外,由于10 B反应的较大横截面,传入中子的能量可能很低(表现中子),从而减少了一级辐射的损害。因此,硼中子捕获(BNC)疗法(BNCT)的概念诞生了。虽然在概念上很简单,但两个技术障碍严重限制了BNCT的实际应用,即缺乏良好的硼载体,这些硼载体将10 B输送到细胞中,并且缺乏紧凑且安全的中子源。从历史上看,BNCT吸引了对侵袭性弥漫性脑肿瘤(例如多形胶质母细胞瘤)的疗法的显着兴趣[6,7](表1)。在过去的20年中,这两个领域都取得了重大进展,而BNCT现在正在美国,日本,中国,俄罗斯和其他具有运营反应堆或最近的加速器中子来源的临床用途[3-5]。但是,现在已经解决了许多临床研究,尽管规模较小,但该应用程序
最近在二维材料中发现的量子发射器为量子信息集成光子器件开辟了新的前景。这些应用中的大多数都要求发射的光子是不可区分的,而这在二维材料中仍然难以实现。在这里,我们研究了利用电子束在六方氮化硼中产生的量子发射器的双光子干涉。我们在非共振激发下测量了 Hong-Ou-Mandel 干涉仪中零声子线光子的相关性。我们发现发射的光子在 3 纳秒的时间窗口内表现出 0.44 ± 0.11 的部分不可区分性,这对应于考虑不完美发射器纯度后的校正值 0.56 ± 0.11。 Hong-Ou-Mandel 可见度与后选择时间窗口宽度的相关性使我们能够估计发射器的失相时间约为 1.5 纳秒,约为自发辐射设定的极限的一半。使用 Purcell 效应和当前的 2D 材料光子学,可见度可达到 90% 以上。
无定形材料表现出各种特征,这些特征不包含晶体,有时可以通过其混乱程度来调节(DOD)。在这里,我们报告了具有不同DOD的单层无定形碳(MAC)和单层无定形硼(MABN)的机械性能。使用具有密度功能理论级别准确性的机器学习势能通过动力学蒙特卡洛(KMC)模拟获得相关结构。提出了一个直观的阶参数,即连续随机网络中由Crystallites占据的面积f x来描述DOD。我们发现f x捕获了DOD的本质:具有相同f x的样品,但使用两个不同的KMC程序获得的微晶的大小和排列,实际上具有相同的径向分布函数,以及键长和键长和键 - 角度。此外,通过使用分子动力学模拟断裂过程,我们发现裂缝前MAC和MABN的机械响应主要由F X确定,并且对大小和特定排列不敏感,并且在某种程度上是晶体的数量和区域分布。分析了两种材料中裂纹的行为,并发现主要在连续的随机网络区域的蜿蜒路径中繁殖,并以截然不同的方式对材料加强的不同方式影响。目前的结果揭示了无定形单层的结构和机械性能之间的关系,并可能为二维材料提供普遍的加强策略。
摘要:从量子传感到量子计算,量子发射器在众多应用中必不可少。六方氮化硼 (hBN) 量子发射器是迄今为止最有前途的固态平台之一,因为它们具有高亮度和稳定性以及自旋-光子界面的可能性。然而,对单光子发射器 (SPE) 的物理起源的理解仍然有限。在这里,我们报告了整个可见光谱中 hBN 中的密集 SPE,并提出证据表明大多数这些 SPE 可以通过供体-受体对 (DAP) 很好地解释。基于 DAP 跃迁生成机制,我们计算了它们的波长指纹,与实验观察到的光致发光光谱非常匹配。我们的工作为物理理解 hBN 中的 SPE 及其在量子技术中的应用迈出了一步。关键词:六方氮化硼、单光子发射器、供体-受体对、量子光学■简介
尽管其重要性,但迄今为止缺乏散装H-BN热导率的复杂理论研究。在这项研究中,我们使用第一原理预测和玻尔兹曼传输方程在大量H-BN晶体中进行了热导率。我们考虑三个声子(3PH)散射,四弹子(4PH)散射和声子重归于。对于室温下的平面内和平面外向,我们的预测热导率分别为363和4.88 w/(m k)。进一步的分析表明,4PH散射降低了导热率,而声子重质化会削弱声子非谐度并增加导热率。最终,平面和非平面外导导率分别显示出有趣的t 0.627和t 0.568依赖关系,与传统1/t关系远离偏差。
摘要。这项工作将硼亚苯丙氨酸氯化物(B-SUBPC-CL)作为有机电子材料的结构,热重,光学和电化学性质。FullProf Suite程序和Rietveld分析用于完善和索引B-SubPC-CL的晶体结构。使用Horowitz-Metzger和Coats-redfern方法,使用热重分析(TGA)和差分热力学分析(DTG)研究动力学热重量因子。B-SUBPC-CL的吸收光谱包含两个强吸收带(Soret样带和Q样带)。通过使用B-SUBPC-CL的摩尔吸收性(ε摩尔)的高斯拟合来估算振荡器强度和电偶极强度。通过使用循环伏安法测量计算B-SUBPC-CL的Homo-Lumo和Band GAP。还提供了B-SUBPC-CL的UV-VIS - NIR吸收光谱和光条间隙。密度功能理论(DFT)方法已被用于为研究化合物获得几何优化的结构。理论计算与实验结果一致。获得的结果指出了B-SubPC-CL对有机电子应用的前景。