在适当的条件下,从多部分束缚态中移除一个粒子会使其崩溃。这一特性被称为“Borromean 特性”,最近已在 Efi-mov 态中通过实验得到证实。人们可以预期,这种奇特的行为应该与强粒子间相关性的存在有关。然而,任何对这种联系的探索都受到表现出 Borromean 特性的物理系统的复杂性的阻碍。为了克服这个问题,我们引入了一个基于许多相互作用粒子的离散时间量子行走的简单动力学玩具模型。我们表明,它描述的粒子需要表现出 Greenberger-Horne-Zeillinger (GHZ) 纠缠才能形成 Borromean 束缚态。由于这种类型的纠缠很容易导致粒子丢失,我们的工作证明了相关性和系统的 Borromean 特性之间的直观联系。此外,我们在复合颗粒形成的背景下讨论了我们的发现。
摘要:归因于独特的拓扑复杂性和优雅的美丽,Borromean系统引起了强烈的关注。然而,目前,硼有机聚合物的建造仍然是一个挑战。为了应对这一巨大的挑战,我们开发了一种超分子 - 诱导的方法来制造硼链链接的有机聚合物。尼古拉德式构建块,具有线性脱氧基础块,构建两个稀有的共价有机框架(COFS),具有高结晶度和坚固的结晶度和坚固的结晶度和坚固型,犹太人选择的三角锥体构件(1,3,5- tris(4-氨基苯基))的溶剂热凝结反应。 结构完善揭示了纠缠2D的成功形成! 2D硼阵列结构。 这两个COF都是微孔的,因此证明了气体分离的潜力。 成功合成了前两个Borromean连接的有机聚合物,铺平了大道,将超分子合成驱动的方法扩展到其他构件和拓扑,并扩大了COF的家庭和范围。犹太人选择的三角锥体构件(1,3,5- tris(4-氨基苯基))的溶剂热凝结反应。结构完善揭示了纠缠2D的成功形成!2D硼阵列结构。这两个COF都是微孔的,因此证明了气体分离的潜力。成功合成了前两个Borromean连接的有机聚合物,铺平了大道,将超分子合成驱动的方法扩展到其他构件和拓扑,并扩大了COF的家庭和范围。