Bose-Einstein冷凝物的研究很重要,因为它具有原子理的潜力。可以提高精度的原子激光器和测量仪器。 例如,BEC可用于精确的重力波检测。 bec还具有减速光的能力,并且已经表明,光脉冲甚至可能被困在它们中。 这可能会导致在基于光的技术领域的充分应用,并影响量子计算的世界。 总的来说,在ISS的CAL中研究更长的BEC的能力肯定会带来令人兴奋的机会。可以提高精度的原子激光器和测量仪器。例如,BEC可用于精确的重力波检测。bec还具有减速光的能力,并且已经表明,光脉冲甚至可能被困在它们中。这可能会导致在基于光的技术领域的充分应用,并影响量子计算的世界。总的来说,在ISS的CAL中研究更长的BEC的能力肯定会带来令人兴奋的机会。
我们在实验上证明了一个多模干涉仪,其中包含一个被困在谐波电势中的39 K原子的玻色子凝结物,在该原子间相互作用中可以取消利用Feshbach的共振。kapitza-dirac从光学晶格中的衍射将BEC一致地分配在多个动量成分中,同样间隔,形成了不同的干涉路径,而轨迹被捕获的har-nonig势封闭。我们研究了两种不同的干涉方案,其中重组脉冲是在确定电位的全部或一半振荡后应用的。我们发现,干涉仪输出处动量成分的相对幅度通过诱导的谐波电位相对于光学晶格的诱导位移对外力敏感。我们展示了如何校准干涉仪,充分表征其输出并讨论透视改进。
我们研究了量子信息流的动力学,其中一个和两个杂质量子位捕获了双孔电势,并与一维超低玻色 - 玻璃 - 玻璃 - 玻璃混合物相互作用。对于浸入二元玻色混合物中的单个量子量,我们表明该系统在有限的时间尺度上保持连贯性,并表现出非马克维亚动力学,尤其是在环境的上分支中。我们通过频谱密度函数的欧姆斯探索了从马尔可夫到非马克维亚的过渡,这些函数受到了种间相互作用的显着影响。在两个空间分离的量子位与Bose-Bose混合物储存库相连的情况下,我们证明了集体的脱碳影响系统动力学,从而导致混合物两个分支的长时间连贯性存活率。在密度光谱函数及其欧姆性特征中反映了破坏性因子的复杂演化。我们发现,反应函数和光谱随量顶之间的距离增加而振荡,从而修改了信息流动动力学。此外,我们对两个分支中二元玻色混合物储层引起的两个量子位之间的纠缠动力学进行了彻底的研究,强调了种间相互作用的关键作用。
一开始是定位的缩放理论。Boomer物理学家1被培养为认为没有二维金属,因为任何含量的疾病都会导致定位和绝缘行为2。他们了解到,微调金属行为可以在超导体 - 绝缘体过渡的量子临界点上表现出来,并通过磁场或混乱来调节,并且对超导膜的早期实验似乎证实了这张图片:超导能力:超导对过渡的一侧,在过渡的一侧,在另一种和关键的金属状态下进行隔离。但从1990年开始,实验表明没有关键的金属状态,而是整个金属阶段开始积累。这种异常的金属状态(AMS)是不寻常的,因为除其他外,其电导率σxx(t→0)的升级为低于正常状态Drude理论的值。另一个异常是观察到的幂律缩放r xx〜(h-h 0)α(t)
1。 div>引言和主要结果。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>1 2。 div>还原为参数范围。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 3。 div>。 div>。 div>。 div>热力学极限中的同质气体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 3.1。存在热力学极限。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 3.2。低密度制度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 4 4。局部密度近似。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 4.1。能量上限。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 4.2。 div>能量下限。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20 4.3。 div>深度收敛。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23附录A.投影仪OTO fi nite-dunnenensal最低水平。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25附录B. GP能量与LLL能量的收敛。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26参考。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>30 div>
我们基于从 Gutzwiller 平均场假设得出的作用的正则量化,开发了 Bose-Hubbard 模型的量子多体理论。我们的理论是对弱相互作用气体 Bogoliubov 理论的系统推广。该理论的控制参数定义为 Gutzwiller 平均场状态之上的零点涨落,在所有范围内都保持很小。该方法在整个相图中提供了准确的结果,从弱相互作用超流体到强相互作用超流体,再到 Mott 绝缘相。作为具体应用示例,我们研究了两点相关函数、超流体刚度、密度涨落,发现它们与可用的量子蒙特卡罗数据具有定量一致性。特别是,恢复了整数和非整数填充时超流体-绝缘体量子相变的两个不同普适性类。
s n Bose在量子统计上的开创性工作为开发现代量子技术(包括Bose-Einstein凝结,量子超导性和量子信息理论)铺平了道路。一半的宇宙中的基本粒子以他的名字命名-Boson。该会议强调,23个国家已经建立了国家量子任务,印度在国际水平上做出了重大贡献,尤其是在量子算法领域。
纳米尺度上粒子的大表面与体积比为设计和合成具有不寻常特性的材料提供了前所未有的机会,这些材料可以在团簇(终极纳米粒子)中以原子精度进行控制。本次演讲将重点介绍纳米团簇的一些不寻常特性,重点关注基础科学 1-3 :(1)多电荷团簇可以稳定吗?如果可以,可以携带固定量电荷的最小尺寸是多少?(2)带同种电荷的纳米团簇可以吸引吗?(3)惰性气体原子真的是惰性的吗?(4)原子能否达到高于自然界预期的氧化态?(5)可以仅用负离子制成盐吗?此外,我将讨论如何利用纳米材料的这些不寻常特性来合成新一代簇组装材料,特别关注锂离子电池 4 和由地球丰富材料制成的催化剂 5,6。
当具有整数自旋的粒子在低温和高密度下聚集时,它们会发生玻色-爱因斯坦凝聚 (BEC)。原子、磁振子、固态激子、表面等离子体极化子和与光耦合的激子表现出 BEC,由于大量占据相应系统的基态,因此产生高相干性。令人惊讶的是,最近发现光子在有机染料填充的光学微腔中表现出 BEC,由于光子质量低,这种情况发生在室温下。在这里,我们证明无机半导体微腔内的光子也会热化并经历 BEC。虽然人们认为半导体激光器是在热平衡之外运行的,但我们在系统中确定了一个热化良好的区域,我们可以清楚地区分激光作用和 BEC。半导体微腔是探索量子统计光子凝聚体的物理和应用的强大系统。实际上,光子 BEC 在比激光器更低的阈值下提供其临界行为。我们的研究还显示了另外两个优点:无机半导体中没有暗电子态,因此这些 BEC 可以持续存在;量子阱提供更强的光子-光子散射。我们测量了一个未优化的相互作用参数 (̃ g ≳ 10 –3),该参数足够大,可以了解 BEC 内相互作用的丰富物理特性,例如超流体光。
NIH 通过推进创新神经技术进行大脑研究 (BRAIN) 计划:团队研究脑回路计划 (U19) 奖项 NS107613-01,Miller (PI) 2018-2020 了解 V1 电路动力学和计算角色:数据科学核心关键人员这个为期 5 年的 U19 奖项的目标是建立和验证显著改进的视觉皮层功能和动态模型。数据科学核心在一定程度上提供了在全国分布的科学项目站点之间共享和分析数据所需的基础设施。奖项 NS104649-01,Costa (PI) 2017-2020 运动控制背后的计算和电路机制角色:数据科学核心负责人这个为期 5 年的 U19 奖项的目的是了解运动控制中心、运动皮层以及脊髓和肌肉之间连接的功能和计算逻辑。