此ELISA套件使用三明治 - elisa作为方法。该套件中提供的微elisa带状板已与白介素6。标准或样品被添加到适当的微elisa带状板孔中,并将其组合到特定的抗体中。然后将特异性的辣根过氧化物酶(HRP)偶联的抗体均匀地添加到每个微elisa条板中,并孵化。自由组件被冲走。将TMB基材解决方案添加到每个孔中。只有那些包含白介素6和HRP共轭白介素6抗体的井将显示为蓝色,然后在添加停止溶液后变成黄色。光密度(OD)以450 nm的波长进行分光光度法测量。OD值与白介素的浓度成正比6。您可以通过将样品的OD与标准曲线进行比较来计算样品中白介素6的浓度。
摘要牛呼吸道疾病(BRD)是牛奶行业中最常见和最昂贵的疾病之一,对全球粮食安全和该行业的经济稳定产生了重大不利影响。牛呼吸道微生物组与健康和疾病密切相关,可以在治疗BRD时提供替代治疗的见解。like特异性的微生物组群落,将上呼吸道和下呼吸道的表面定居,由动态和复杂的生态系统组成。呼吸生态系统中的不平衡与BRD之间的相关性已成为热门研究主题。因此,我们总结了BRD的发病机理和临床迹象以及呼吸菌群的改变。当前的研究技术和健康呼吸道中的微生物组的生物地球化学也得到了回顾。我们讨论了驻留微生物和病原体定植的过程以及宿主的免疫反应。尽管在某种程度上已经揭示了微生物群和BRD之间的关联,但解释了BRD与呼吸微生物营养不良有关的发展可能会成为即将进行的研究的方向,这将使我们能够更好地理解呼吸道微生物组的重要性及其对动物健康和性能的贡献。关键字:牛,牛呼吸道疾病,菌群,生物地理学,宿主微生物相互作用,肺炎
1美国路易斯安那州立大学兽医临床科学系,美国洛杉矶70803,美国巴吞鲁日; hgafen1@lsu.edu(h.b.g。 ); cliu@lsu.edu(C.-C.L. ); nikoleeineck@gmail.com(N.E.I。 ); cscully@lsu.edu(c.m.s. ); mironovich1@lsu.edu(M.A.M. ); reneecarter@lsu.edu(R.T.C。) 2路易斯安那州立大学病原科学系,美国洛杉矶70803,美国洛杉矶; lguarneri1@lsu.edu 3 3美国路易斯安那州立大学医学院微生物学和寄生虫学系,美国洛杉矶70112,美国; ctay15@lsuhsc.edu(c.m.t. ); mluo2@lsuhsc.edu(m.l.) 4小型动物临床科学系西部兽医学院,萨斯卡通,SK S7N 5B4,加拿大; marina.leis@usask.ca 5临床科学系,康奈尔大学兽医学院,美国纽约州伊萨卡市,纽约14853; ems462@cornell.edu *通信:alewin1@lsu.edu;电话。 : +1-225-578-9600†这些作者对这项工作也同样贡献。1美国路易斯安那州立大学兽医临床科学系,美国洛杉矶70803,美国巴吞鲁日; hgafen1@lsu.edu(h.b.g。); cliu@lsu.edu(C.-C.L.); nikoleeineck@gmail.com(N.E.I。); cscully@lsu.edu(c.m.s.); mironovich1@lsu.edu(M.A.M.); reneecarter@lsu.edu(R.T.C。)2路易斯安那州立大学病原科学系,美国洛杉矶70803,美国洛杉矶; lguarneri1@lsu.edu 3 3美国路易斯安那州立大学医学院微生物学和寄生虫学系,美国洛杉矶70112,美国; ctay15@lsuhsc.edu(c.m.t. ); mluo2@lsuhsc.edu(m.l.) 4小型动物临床科学系西部兽医学院,萨斯卡通,SK S7N 5B4,加拿大; marina.leis@usask.ca 5临床科学系,康奈尔大学兽医学院,美国纽约州伊萨卡市,纽约14853; ems462@cornell.edu *通信:alewin1@lsu.edu;电话。 : +1-225-578-9600†这些作者对这项工作也同样贡献。2路易斯安那州立大学病原科学系,美国洛杉矶70803,美国洛杉矶; lguarneri1@lsu.edu 3 3美国路易斯安那州立大学医学院微生物学和寄生虫学系,美国洛杉矶70112,美国; ctay15@lsuhsc.edu(c.m.t.); mluo2@lsuhsc.edu(m.l.)4小型动物临床科学系西部兽医学院,萨斯卡通,SK S7N 5B4,加拿大; marina.leis@usask.ca 5临床科学系,康奈尔大学兽医学院,美国纽约州伊萨卡市,纽约14853; ems462@cornell.edu *通信:alewin1@lsu.edu;电话。: +1-225-578-9600†这些作者对这项工作也同样贡献。
牛边形体病主要由 Anaplasma marginale 引起,对牛健康和畜牧业构成重大挑战。该领域的研究已发展到解决该疾病的各个方面,包括其病因、流行病学、诊断、治疗、预防和社会经济影响。在理解、诊断、治疗和预防牛边形体病方面取得的最新进展有助于改善管理实践。尽管该领域的研究取得了进展,但仍有一些关键领域需要采取行动。对于本期特刊,我们欢迎原创文章、评论论文和通讯的投稿,这将有助于增进对该疾病的理解、预防和控制,特别是在疫苗开发、了解发病机制、诊断改进和媒介控制策略方面。
病毒呼吸道疾病是严重临床症状和牛育种经济损失的主要原因。这项研究旨在评估包括牛病毒腹泻病毒/粘膜病毒病毒/粘膜病毒(BVDV/MDV),包括牛病毒腹泻病毒/感染性牛促进性促进性促进性促进性促进性促牛/感染性浮力性脉孔炎病毒(IBR/Bovine synirial synirial niveratory niveratory niveration nive and bovaine notiagine niv> div> Parainfluenza病毒3型(PI3)。从242个未接种的牛群中收集了总共1,741个血液样本。这些动物包括1314名女性和427名男性,年龄在6个月至5岁之间。种群包括纯品种(荷斯坦或蒙特贝利亚德品种)和杂交(本地 - 霍尔斯坦或当地的蒙特比亚特),位于摩洛哥六个地区的89个乡村公社,包括卡萨布兰卡·塞塔特(Casablanca-Settat),拉巴特·萨尔(Rabat-Salé-kénitra) fès-meknès和东方。使用I-Elisa技术分析样品。结果指示的血清阳性率分别为56.1、21.5、86.4和85.4%,分别为BVD/MD,IBR/IPV,BRSV和Parainfluenza-3。共同感染,其中95%的牛被四种病毒中的至少一种感染。血清阳性率随着年龄,性别,品种,繁殖系统和实践而差异很大。这些发现证实了牛呼吸道病毒疾病的地方性地位,并强调了它们对摩洛哥牲畜损失的直接和间接影响。
•开胃培养添加降低了奶酪生产的细菌多样性(图1,步骤3)•奶酪洗涤(步骤7)是上游和下游步骤中的细菌群落重叠的步骤(图2)•细菌群落的组成在整个生产过程中都发生了变化(图3):原乳是高细菌多样性的主导,起动培养物引入导致链球菌和乳酸杆菌的丰度更高,然后成熟的成熟是,corynebacterium and corynebacterium和brevibacterium的丰度增加。应进行进一步的分析,以阐明接触表面微生物群在奶酪生产过程中的精确作用。
肿瘤是由于不协调和不受控制的细胞增殖而导致的,超过正常边界的组织质量。肿瘤会影响牛动物的各个部位,包括皮肤,骨骼,腺体和内脏器官。本研究旨在探索牛皮肤肿瘤的病理及其对牛的健康和经济影响。皮肤肿瘤是牛种类最常见的肿瘤疾病。牛最常见的皮肤肿瘤包括牛乳头瘤,鳞状细胞癌和牛淋巴瘤。这些肿瘤构成了重大的健康挑战,并对牛的产量及其副产品产生负面影响。皮肤肿瘤的临床特征通常包括高肿瘤病,棘皮动物,伸长的rete钉,大结构结构,外生和花椰菜样病变以及可易碎的病变。黑色素瘤是另一种类型的增殖性皮肤肿瘤,其特征是纺锤体,构成含有丰富黑色颜料的圆形细胞形状。超过90%的皮肤肿瘤与长时间暴露于紫外线辐射有关。诊断牛的皮肤肿瘤通常涉及皮肤活检和细针吸入细胞学。在组织学上,皮肤肿瘤细胞表现出增加的核胞质比,细胞和核皮质形态以及细胞的粘附布置。除了健康的影响外,牛的皮肤肿瘤还会导致生产力降低,繁殖率降低,car体谴责以及降级皮肤和生皮。皮肤肿瘤的常见治疗选择包括化学疗法,放射线和手术切除。鉴于皮肤肿瘤在埃塞俄比亚是一种经济上重要的疾病,因此需要增加研究人员和控制和预防中心的关注。早期诊断和对这些肿瘤的有效管理是必须解决的关键问题。
牛骨骼肌基因组DNA是一种高度完整的高分子大小DNA。它是从单个供体的单个组织中提取的,并用无DNase RNase处理以去除污染物RNA。基因组DNA精确地通过纳米体(一种分光光度计技术)测量,并存储在-80oC中。
母羊、山羊和水牛奶中含有牛奶,这是由于 γ-酪蛋白在纤溶酶分解后发生等电聚焦所致。 该方法基于与认证参考标准的蛋白质模式进行比较,可以定性估计测试样品中的牛奶。
质粒载体整合了编码牛 MBL 蛋白 (21-249aa) 的基因,生成重组质粒,然后将其引入杆状病毒细胞。阳性杆状病毒细胞的选择基于其抵抗特定抗生素的能力。随后,在有利于牛 MBL 基因表达的条件下培养含有重组质粒的杆状病毒细胞。该蛋白质带有 N 端 10xHis 标签。表达后,采用亲和纯化从细胞裂解物中分离和纯化重组牛 MBL 蛋白。变性 SDS-PAGE 用于分离所得重组蛋白,从而可以估计其纯度超过 85%。