愿景 我擅长发明和应用技术对大脑和其他复杂生物系统进行系统映射、分析、修复和模拟。我在麻省理工学院的研究小组的理念是尝试将对这些复杂系统的观察和修复提升到“地面实况”水平,以可扩展和系统的方式解决这些系统运行的基本机制。我们正在开发一些工具,以实现纳米级精度的细胞和组织分子映射(扩展显微镜)、记录脑回路和其他生物系统的高速动态(机器人定向进化进化而来的电压指示器和其他荧光指示器,以及空间和时间多路复用的报告基因,以及使活体大脑更透明的方法),以及使用光驱动的分子工具控制脑细胞的活动(光遗传学)。我是一名神经科学家和物理学家,由于我在许多领域的跨学科培训,我精通许多工程领域,从纳米工程到化学到基因组学到光学到电气工程。我领导着一个多学科团队来解决这些问题,其中包括物理学家、化学家、计算机科学家、临床医生和硬件工程师。我们在内部将这些工具应用于分析秀丽隐杆线虫和斑马鱼幼虫等的神经系统,着眼于扩展到小鼠和人类,目标是以生物学上真实的方式模拟整个大脑。我们还致力于从根本上理解和对抗大脑衰老以及神经和精神疾病。我与世界各地的数十个实验室合作,将新技术付诸实践,并应用这些工具来解决基础和应用科学问题。我们在麻省理工学院的实验室和我们的合作伙伴已经将我们的工具分发给了世界各地的数千名研究人员。
参考文献 1. Zemelman, BV, Lee, GA, Ng, M., & Miesenbock, G. (2002). 选择性光刺激遗传带电神经元。神经元,33 (1), 15-22。 2. O'Neill, SC, Mill, JG, & Eisner, DA (1990). 大鼠分离心室肌细胞收缩的局部激活。美国生理学杂志,258 (6 Pt 1), C1165-1168。 3. Hess, GP, Niu, L., & Wieboldt, R. (1995). 通过快速化学动力学方法确定神经递质受体介导反应的化学机制。纽约科学院年鉴,757,23-39。 4. Adams, SR, & Tsien, RY (1993)。使用笼状化合物控制细胞化学反应。Annual Review of Physiology,55,755-784。5. Wang, SS,和 Augustine, GJ (1995)。笼状化合物的共聚焦成像和局部光解:突触功能的双重探针。Neuron,15 (4),755-760。6. Callaway, EM,和 Katz, LC (1993)。使用笼状谷氨酸的光刺激揭示了活体脑切片中的功能性回路。美国国家科学院院刊,90 (16),7661-7665。7. Parker, I.,和 Yao, Y. (1991)。肌醇三磷酸从功能上离散的亚细胞库中再生性释放钙。 《伦敦皇家学会学报》,B 辑:生物科学,246(1317),269-274。 8. Zemelman, BV、Nesnas, N.、Lee, GA 和 Miesenbock, G. (2003)。异源离子通道的光化学门控:远程控制遗传指定的神经元群体。《美国国家科学院院刊》,100(3),1352-1357。 9. Lima, SQ 和 Miesenbock, G. (2005)。通过遗传靶向的神经元光刺激远程控制行为。《细胞》,121(1),141-152。 10. Banghart, M.、Borges, K.、Isacoff, E.、Trauner, D. 和 Kramer, RH (2004)。光激活离子通道用于远程控制神经元放电。《自然神经科学》,7 (12),1381-1386。11. Nagel, G.、Szellas, T.、Huhn, W.、Kateriya, S.、Adeishvili, N.、Berthold, P.、...Bamberg, E. (2003)。通道视紫红质-2,一种直接光门控阳离子选择性膜通道。《美国国家科学院院刊》,100 (24),13940-13945。12. Boyden, ES、Zhang, F.、Bamberg, E.、Nagel, G. 和 Deisseroth, K. (2005)。毫秒级、遗传靶向的神经活动光学控制。《自然神经科学》,8 (9),1263-1268。
2024年8月2日,星期五,印度公司事务研究所(IICA)举办了一次圆桌会议会议,汇集了来自印度领先的执行搜索公司的20个管理合作伙伴,股权合作伙伴和高级合作伙伴。活动看到了包括Korn Ferry,Egon Zehnder,ABC顾问,Kestria,Kestria,Kestria,India,Pedersen&Partners,EMA Partners,DHR Global,Boyden,Boyden,Sheffield Haworth,Vahura,Vahura,Vahura,3p Conserals Pvt的参与。Ltd.,Walkwater人才顾问,Xpheno,Deininger Consulting,Athena Search和Executive Access。
Anderson诉Liberty Lobby,Inc。 , 477 U.S. 242 (1986) ...................................................................................................... 11 B.M.H. C.B. 诉学校BD。 弗吉尼亚州切萨皮克市,833 F. Supp。 560(E.D. Va.1993) .............................................................................. 1, 12 Chafin v. Gibson, 213 W.Va. 167, 578 S.E.2d 361 (2003). ........................................................................ 11 Chapman v. City of Virginia Beach, 252 Va. 186, 475 S.E.2d 798 (1996) ................................................................... 8, 13, 14 Colby v. Boyden, 241 Va. 125, 400 S.E.2d 184, 189 (1991) ..................................................................... 14 Cowan v. Hospice Support Care, Inc., 268 Va. 482, 603 S.E.2d 916, 918 (Va. 2004) ......................................................... 13, 14 Elliott v. Carter, 292 Va. 618, 622, 791 S.E.2d 730 (2016) ....................................... v。Hyatt,139 S. Ct。 1485, 1496 (2019) .................................................................................... 1, 12 Frazier v. City of Norfolk, 234 Va. 388, 362 S.E.2d 688, 691 (1987) ............................................... 9, 13, 14, 17, 18 Gooch v. West Virginia Dep't of Pub. appx。 480,491(4th Cir。 2008) ....................................................................... 14Anderson诉Liberty Lobby,Inc。, 477 U.S. 242 (1986) ...................................................................................................... 11 B.M.H.C.B.诉学校BD。 弗吉尼亚州切萨皮克市,833 F. Supp。 560(E.D. Va.1993) .............................................................................. 1, 12 Chafin v. Gibson, 213 W.Va. 167, 578 S.E.2d 361 (2003). ........................................................................ 11 Chapman v. City of Virginia Beach, 252 Va. 186, 475 S.E.2d 798 (1996) ................................................................... 8, 13, 14 Colby v. Boyden, 241 Va. 125, 400 S.E.2d 184, 189 (1991) ..................................................................... 14 Cowan v. Hospice Support Care, Inc., 268 Va. 482, 603 S.E.2d 916, 918 (Va. 2004) ......................................................... 13, 14 Elliott v. Carter, 292 Va. 618, 622, 791 S.E.2d 730 (2016) ....................................... v。Hyatt,139 S. Ct。 1485, 1496 (2019) .................................................................................... 1, 12 Frazier v. City of Norfolk, 234 Va. 388, 362 S.E.2d 688, 691 (1987) ............................................... 9, 13, 14, 17, 18 Gooch v. West Virginia Dep't of Pub. appx。 480,491(4th Cir。 2008) ....................................................................... 14诉学校BD。弗吉尼亚州切萨皮克市,833 F. Supp。560(E.D.Va.1993) .............................................................................. 1, 12 Chafin v. Gibson, 213 W.Va. 167, 578 S.E.2d 361 (2003)......................................................................... 11 Chapman v. City of Virginia Beach, 252 Va. 186, 475 S.E.2d 798 (1996) ................................................................... 8, 13, 14 Colby v. Boyden, 241 Va. 125, 400 S.E.2d 184, 189 (1991) ..................................................................... 14 Cowan v. Hospice Support Care, Inc., 268 Va. 482, 603 S.E.2d 916, 918 (Va. 2004) ......................................................... 13, 14 Elliott v. Carter, 292 Va. 618, 622, 791 S.E.2d 730 (2016) .......................................v。Hyatt,139 S. Ct。 1485, 1496 (2019) .................................................................................... 1, 12 Frazier v. City of Norfolk, 234 Va. 388, 362 S.E.2d 688, 691 (1987) ............................................... 9, 13, 14, 17, 18 Gooch v. West Virginia Dep't of Pub.appx。480,491(4th Cir。2008) ....................................................................... 14Safety, 195 W.Va. 357, 465 S.E.2d 628 (1995) ......................................................................... 11 Hatten v. Mason Realty Co., 148 W. Va. 380, 135 S.E.2d 236 (1964) ........................................................................ 10 Jividen v. Law, 194 W.Va. 705, 461 S.E.2d 451 (1995) ......................................................................... 20 Kellam v. School Bd., 202 Va. 252, 117 S.E.2d 96 (1960) ..................................................................... 1, 12, 14 Kuykendall v. Young Life, 261 Fed.
摘要。背景/目标:我们以前报道了与姜黄素结合使用时氨基磷灰酮衍生物作为对乳腺和其他起源反应性肿瘤的治疗剂的潜力。这项研究旨在筛选新型氨基喹酮衍生物(RAU 008,RAU 010,RAU 015和RAU 018)与姜黄素结合使用姜黄素,以用于细胞毒性,抗血管生成和抗激发和抗抗激素对MCF-7和MCF-7和MDA-MDA-MB-231乳腺癌细胞。材料和方法:使用3-(4,5-二甲基噻唑-2-基)分析细胞毒性和抗血管生成作用-2,5-二苯基溴化溴化物溴化物测定和酶连接的免疫吸收测定;虽然使用粘附测定法,Boyden Chambers和Matrigel测量了抗转移性效应。结果:与单个治疗相比,姜黄素与RAU 008相比在MCF-7细胞中引起了明显的细胞毒性作用,而当与RAU 015和RAU 018结合使用时,它在MDA-MB-231细胞中也显示出相似的作用。MCF-7细胞中RAU 015加姜黄素的抗血管生成作用与MDA-MB-231细胞中的姜黄素和姜黄素相比,抗血管生成的效果比单个治疗更有效,而MDA-MB-231细胞的转移能力可显着降低,用于使用氨基酸氨基酸氨基酸氨基酸氨基氨基素蛋白蛋白蛋白蛋白蛋白蛋白蛋白含量降低。结论:作为针对乳腺癌的治疗剂,aminonaphthoquinones可能会提供巨大的希望,尤其是与姜黄素结合使用时。
员工职位 薪酬 费用 Aldcroft, J 气候变化专家 94,114 $ 129 $ Beatty, V 废水处理设施运营商 95,312 2,022 Bell, R 公用事业经理 136,824 1,838 Bertrand-Kidd, L 水上协调员 95,365 4,032 Boyden, K 娱乐协调员 85,831 2,272 Brennan, T 执行协调员 103,760 2,506 Brown, G 人力资源和福利协调员 86,339 Busch, R 娱乐设施助理经理 101,994 3,145 Byron, T 首席建筑检查员 102,083 2,449 Cao, H 工程技术专家-施工协调员 96,004 4,072 Carter, K 电工 100,151 404 Cator, S 运营总监 148,445 58 Cavey, S 人力资源顾问 95,244 749 Chadburn, S 环境项目协调员 92,109 1,558 Charles, D 技术服务专家 97,307 275 Cheng, R 高级经理,工程(运输) 80,313 2,404 Clark, C 皇家骑警警卫 82,402 699 Clark, L 薪资协调员 87,771 470 Convery, C 公园员工 2 76,908 2,137 Conway, D 分区和环境服务总监 154,728 2,491
自 1960 年代以来,人们使用了各种趋化性测定方法,但这些测定方法都存在很大的局限性。Transwell 测定方法技术简单且应用广泛;将装有细胞的多孔插入物放置在装有引诱剂的孔内,(一旦通过扩散建立起浓度梯度)细胞就会通过微米大小的孔迁移到孔中,通过取出插入物并计数孔中的细胞来量化趋化性。[5] xCEL-Ligence 测定方法提供了一项重大技术进步;当细胞穿过改良的 Boyden 室中的孔时,可以实时测量阻抗变化。[6] 为了解决 Transwell 测定方法的一些局限性,人们引入了替代方法,包括跟踪和监测单个细胞(如 Dunn 室)[7] 以及检测细胞可逆性或细胞趋向性(如琼脂糖下迁移测定方法)。 [8] 最近,人们开发出了微流控系统 [9],该系统能够控制稳定的梯度,[10] 区分不同类型的运动(例如,趋化性、化学运动——无方向性细胞迁移和逃逸性 [11] ),实时追踪单个细胞,[12] 并提高吞吐量 [13]——有时不需要太多依赖专门的设备即可实现。 [14] 虽然微流控方法前景广阔,但它们在生物医学研究中的应用受到了阻碍,因为操作设备所需的技术复杂性、制造和原型制作时间长、经常使用的塑料的生物相容性问题(即聚二甲基硅氧烷、
基底样乳腺癌是最具侵略性的癌症之一,仍然没有有效的靶向治疗方法。为了鉴定新的治疗靶标,我们在八个乳腺癌细胞系上进行了mRNA-SEQ。在基础样肿瘤中过表达的基因中,我们专注于RhoA和RhoB基因,该基因编码已知在肌动蛋白细胞骨架中起作用的小GTPases,从而允许细胞迁移。QRT-PCR和Western印迹用于表达研究。通过伤口愈合和Boyden Chambers分析分析了迁移和侵入性特性。通过荧光肌动蛋白标记评估应力纤维的形成。Rho siRNA,小型抑制剂Rhosin处理和BRCA1转染以研究RHO和BRCA1蛋白的作用。我们表明,RhoA的强烈表达和RHOB的低表达与乳腺癌的基础样亚型有关。降低RhoA表达可降低基底样细胞系的迁移和侵袭能力,同时降低RHOB表达增加了这些能力。Rhosin是RhoA的抑制剂,也可以减少基底样细胞系的迁移。RHO蛋白参与了应激纤维的形成,这是迁移细胞中发现的肌动蛋白细胞骨架的构象:RhoA表达的抑制降低了这些纤维的形成。这些结果表明,Rho蛋白是基底样和BRCA1突变乳腺癌的潜在治疗靶标,因为迁移和获得间充质特性是这些具有高转移性潜力的肿瘤的关键功能途径。brca1是一种基础样肿瘤中经常失活的基因,似乎在这些肿瘤中RhoA和RhoB的差异表达中起作用,因为在BRCA1突变的基底样细胞系中BRCA1表达的恢复RhoA的表达降低了RhoA的表达和RHOB的表达,并增加了迁移能力的表达。
本书所报告的研究跨越了 12 年的时间。在此期间,我得到了许多同事、学生、创新者和研究赞助商的帮助。我一直努力使这项研究和这本书配得上我所得到的慷慨帮助。我要感谢 Thomas Allen、Anne Carter、Zvi Griliches、Ken-ichi Imai、Ralph Katz、Edwin Mansfield、Richard Nelson、Ikujiro Nonaka、Ariel Pakes、Richard Rosenbloom 和 Roy Rothwell 在研究过程中给予我许多宝贵的意见。多年来,我很幸运能有许多非常有才华的访问学者和研究生加入我的研究和讨论。其中尤为突出的是:John Becker、Alan Berger、Julian Boyden、Alan Drane、Abbie Griffin、David Israel-Rosen、Andrew Juhasz、Toshihiro Kanai、Susumu Kurokawa、Walter Lehmann、Howard Levine、William Lionetta、Gordon Low、Richard Orr、Barbara Poggiali、Kiyonori Sakakibara、Stephen Schrader、Frank Spital、Heidi Sykes-Gomez、Pieter VanderWerf 和 Walter Yorsz。他们都为工作内容和研究乐趣做出了巨大贡献。多年来,我和我的学生采访了数百人。有些人是我们研究的重要创新的开发者,而其他人则没有直接的知识。许多人借给我们材料,并努力帮助我们准确了解他们的行业和创新相关经验。感谢所有人。如果没有美国国家科学基金会政策研究与分析司的资助,我在这里报告的研究就不可能实现。多年来,尽管外部研究的预算有时危险地下降到接近零,但 Alden Bean、Miles Boylan、Andrew Pettifor、Rolf Piekharz、Eleanor Thomas 和匿名同行评审员通过一系列资助支持我的工作。最后,我要感谢 Jessie Janjigian,她编辑了我的手稿并尝试(部分成功)教我,体面的句子可以少于一个段落,并且它们不需要包含用于强调的破折号。
在药物开发管道中的三维(3D)体外模型可以帮助在临床前阶段,在临床试验之前,减少,有时甚至根据“减少,减少,再生和替代)(Herrmann和Jayne,2019年,2019年),在临床试验之前,减少甚至更换动物研究,在临床试验之前,减少,甚至更换动物研究,以帮助选择最有前途且最安全的候选药物。为此,已经开发了几种类型的3D体外培养物,包括高级模型,例如芯片和微量流体模型(Sontheimer-Phelps等,2019; Peck等,2020),器官(Kim等,2020)和Mini-Organs(Lawlor等人(Lawlor等)(Lawlor等人,2020年)。这些模型还在药物发现领域打开了许多新的机会和研究方向。例如,从患者收获的细胞产生的3D类器官可以应用于个性化医学方法。此外,可以通过当前在3D体外建模中的当前知识提供支持的组织工程解决方案来加快对新疗法或再现应用的新疗法或治疗方法的开发和翻译研究。这有助于通过直接投入对监管科学和工业技术创新管道的直接投入进行筛查。本研究主题涵盖了体外3D模型的开发,使用和验证的领域,在这些模型中,新颖的方法和发现证明了三维在生物学中的关键作用,并为将新的诊断和治疗解决方案转化为现实临床创新方法的成功率提供了一个平台,以使患者的益处造成真正的临床创新方法。在癌症研究领域,Kitaeva等。 Mondadori等。在癌症研究领域,Kitaeva等。Mondadori等。该研究主题具有五次审查和观点文章,阐明了药物发现中替代模型领域的多个方面,并为其短期和长期发展提供了关键的考虑。这些评论与三篇原始研究文章相辅相成,这些文章有助于将最先进的体外模型中最新艺术品的挑战和潜力背景。对先进的体外模型进行了审查。本手稿提供了不同方法的深入比较,包括二维和三维培养物,Boyden Chambers,微流体系统和3D Bioprinting。对2020年1月的系统文献综述进行了针对癌症和免疫细胞渗出的微流体模型的更新,该模型突出了所分析的几项研究中生物物理,生化和环境因素的关键作用。同样,Bracher等人。讨论需要采用系统的方法来审查脑肿瘤研究中体外方法的必要性。这种方法将能够确定相关的评估标准,以帮助使用先进的体外方法对脑肿瘤研究的计划和/或评估。在组织工程领域,Thompson等人的评论。提供有关商业上的见解
