●4D:表现出对歧义,毅力和开放式问题工作能力的容忍度。●5A:制定适合技术辅助方法的问题定义,例如数据分析,摘要模型和算法思维,以探索和查找解决方案。●5C:将问题分解为组件部分,提取关键信息,并开发描述性模型以了解复杂的系统或促进解决问题。●6C:通过创建或使用各种数字对象(例如可视化,模型或仿真)来清晰有效地传达复杂的想法。●7C:为项目团队做出建设性的贡献,承担各种角色和责任,以有效朝着共同的目标努力。
在目标上,每个团队都使用精密吸管作为导弹主体,恰好建造了6枚导弹。导弹是在活动期间构建的,仅使用Weso提供的材料。导弹是在固定目标的室内发射的,每个参与者都有一个有机会发射的机会。使用团队三个最佳发射的导弹(距离目标距离)的准确性用于确定球队得分,与被视为获胜者的总距离最短。
摘要 - RSNA-MICCAI 脑肿瘤放射基因组学分类挑战赛[1]旨在通过对多参数 mpMRI 扫描(T1w、T1wCE、T2w 和 FLAIR)进行二元分类来预测胶质母细胞瘤中的 MGMT 生物标志物[2]状态。数据集分为三个主要队列:训练集、验证集(在训练期间使用),测试集仅在最终评估中使用。图像要么是 DICOM 格式[3],要么是 png 格式[4]。使用不同的架构来研究该问题,包括 3D 版本的 Vision Transformer (ViT3D)[5]、ResNet50[6]、Xception[7] 和 EfficientNet-b3[8]。AUC 被用作主要评估指标,结果显示 ViT3D 和 Xception 模型都具有优势,在测试集上分别达到 0.6015 和 0.61745。与其他结果相比,考虑到任务的复杂性,我们的结果被证明是有效的。通过探索不同的策略、不同的架构和更多样化的数据集可以取得进一步的改进。
● 生物物理化学基础研究 ● 分子动力学模拟 ● 机械化学 ● 软物质的平衡和非平衡统计力学 ● 生物聚合物/大分子的结构和动力学 ● 材料化学和非均相催化 ● 有机大分子——材料和生物医学中的设计、合成和应用 ● 离散超分子集合的自组装形成及其功能应用研究 ● 用于选择性吸附和封存污染物/危险物质的工程介孔聚合物 ● 用于生物医药的功能纳米结构的制造 ● 用于靶向治疗的新型分子实体的设计、合成和开发 ● 药物发现中的生物正交化学 ● 计算催化和小分子活化 ● 新型有机和过渡金属催化体系和人工金属酶的计算机设计 ● 用于研究生物分子金属相互作用的荧光光谱。
#摘要 - 数十年来,专业人士的脑部排水和迁移一直是斯里兰卡的一个话题。,但斯里兰卡政府尚未采取适当的行动来克服迄今为止的问题。熟练的专业人士的迁移显示出来是由于抗议而发生的增加,因为这恰好是政治不稳定的原因之一。本文旨在分析斯里兰卡的大脑排水和迁移性质,并确定确定技能迁移的关键组成部分。这项研究使用了一种组合方法,其中进行了107个深入的访谈,以收集数据和对文献的系统综述(2000-2022)。结果表明,熟练的专业人员的迁移已延长到2022年,以及社会,经济和政治因素如何影响移民。关键词 - 脑力流失,经济,移民,专业人士
iit kharagpur的承诺高高,致力于国家。在这方面,我们旨在为行业提供技术高质量的员工池,该库为各种知名组织的发展提供了自己的成长,并为我们的国家建设过程做出了贡献。IIT Kharagpur试图每年改进这一目标,最新的事态发展是增加微观特征和国际夏季和冬季学期,以确保我们的学生超越其丰富的课程学科界限的学习。也令人鼓舞的是,考虑到这些经验在塑造自己的个性方面的重要性,学生参与了国家和国际活动中各种技术,创新企业和社会文化活动。
该团队将把他们的 PAM 工具应用于跨越十年的 PMRF 数据集,以研究布氏鲸的发声和提示率,并比较随时间和运动行为状态的提示率。工作将包括手动验证先前在数据集中识别的布氏鲸叫声。分析结果还将与已发布的提示率进行比较,以评估随时间、位置或种群的稳定性。将根据环境变量(例如一年中的时间、季节、风和波浪数据)以及其他情境数据(例如与最近的呼叫布氏鲸的距离)检查轨迹运动学。
我是一名计算/理论化学家,对三大领域感兴趣:1) 开发新的量子和统计力学技术,用于在后 DFT 时代建模强相关分子和量子材料 [电子结构];2) 设计新的替代(分子、量子和细胞)计算技术和算法 [替代计算];3) 使用生物物理和统计方法预测蛋白质的进化,以及可以针对它们的药物 [生物物理学]。到目前为止,我的团队已经开发了各种新的、更准确和更高效的量子蒙特卡罗方法,展示了如何使用简单的有机分子来存储信息和计算,并预测了与耐药性有关的酶 β-内酰胺酶如何进化。其他过去和现在的研究兴趣包括计算生物学和神经科学、数据科学、信息论、计算线性代数、随机学和凝聚态物理学中的问题。我们经常与实验者合作,以实现我们关于量子材料、量子传感和替代计算策略的理论。
许多神经系统条件会破坏大脑与其环境之间的信息流。这些疾病包括大脑或脊髓损伤,肌萎缩性侧面硬化症(ALS),脑干中风,多发性硬化症等。这些疾病和其他退化性疾病会损害控制肌肉或损害肌肉本身的神经途径。严重的病例可能导致自愿控制的丧失,包括眼动和呼吸。因此,受影响的个体可能会完全锁定在自己的身体上,无法以任何方式进行交流。现代医疗技术可以使许多如此瘫痪的人过长寿,这加剧了他们的疾病的个人,社会和经济负担。没有治愈这些疾病的任何选择,还保留了三个用于恢复功能的选项[1,2]。第一种选择是增加剩余输出选项的功能。换句话说,仍处于自愿控制的肌肉可以代替瘫痪的肌肉。这种替代通常在实践中受到限制,但仍然有用。对于特殊的技术,借助适当的技术,严重瘫痪的个体可以使用眼动来控制计算机[3];否则他们可能会使用手动作来产生合成语音[4-9]。第二种选择是通过绕过受损的通用途径来恢复功能。例如,脊髓损伤的患者可以使用高于病变水平的肌肉活动来控制瘫痪的肌肉的电刺激,
图9 脑机接口 BCI(脑机接口)技术的局限性可能源于其对当前神经科学和工程能力的依赖,这限制了其应用范围和效率。例如,现有BCI系统的用户满意度相对较低,可能导致受试者或用户视觉疲劳或认知紧张。某些BCI系统需要受试者或用户进行大量的学习和调整期,而解码准确性、稳定性和响应时间不足等问题可能会限制其整体有效性或易用性[15]。B. 脊髓刺激(SCS) 这是一种在脊髓中植入电极的过程。电极发出的电脉冲可以阻断疼痛信号或刺激肌肉。SCS 已用于帮助脊髓损伤患者恢复部分运动和感觉 [16] [17]。