摘要 — 磁共振成像 (MRI) 常用于脑肿瘤诊断、治疗计划和治疗后监测。最近,已经提出了各种基于深度神经网络的模型来对脑 MRI 中的肿瘤进行像素级分割。然而,MRI 中的结构变化、空间差异和强度不均匀性使分割成为一项具有挑战性的任务。我们提出了一种基于 U-Net 的新型端到端脑肿瘤分割架构,该架构将 Inception 模块和扩张卷积集成到其收缩和扩展路径中。这使我们能够提取局部结构和全局上下文信息。我们使用脑肿瘤分割 (BraTS) 2018 数据集对胶质瘤亚区域(包括肿瘤核心、增强肿瘤和整个肿瘤)进行了分割。在肿瘤核心和整个肿瘤分割方面,我们提出的模型的表现明显优于最先进的基于 U-Net 的模型(p < 0.05)。
摘要目的:多发性磁共振(MR)图像的存在增加了可用于诊断和治疗脑癌患者的临床信息水平。但是,获取完整的多元图像MR图像的完整集并不总是可行的。在这项研究中,我们开发了一种最先进的深度学习卷积神经网络(CNN),用于跨三个标准的MRI对比度,用于大脑的三个标准MRI对比度。方法:在本研究中使用了477例临床诊断患有神经胶质瘤脑癌的477例患者的BRATS'2018 MRI数据集,每位患者患有T1加权(T1),T2加权(T2)和FLAIR对比度。分别将其分别分为64%,16%和20%,分别为培训,验证和测试集。我们开发了一个U-NET模型,以学习与三个MRI对比度的目标图像对比的源图像的非线性映射。使用于点误差(MSE)成本函数,0.001学习率的ADAM优化器和120个时期,批次大小为32。通过计算MSE,平均绝对误差(MAE),峰值信噪比(PSNR)和结构相似性指数(SSIM)来评估生成的合成MR图像。结果:与我们的模型一起生成的合成-MR图像几乎与测试数据集上的真实图像有关所有翻译的区别,除了合成的素质图像的质量略低,并且显示出细节的丢失。我们的结果与Brats数据集上其他深度学习模型的最佳报告结果一样好。六个翻译中平均PSNR,MSE,MAE和SSIM值的范围分别为29.44–33.25 dB,0.0005–0.0012,0.0086–0.0149和0.932–0.946。结论:我们的U-NET模型表明,它可以在跨大脑MRI对比度上准确地执行图像图像翻译。由于多重激发MRIS的可用性,这种方法可能在改善临床决策和更好地诊断脑癌患者的临床使用方面具有很大的希望。这种方法可能在临床上相关,并设定明显的步骤以有效地填充没有其他MR序列的缺乏空隙。
摘要 - 脑肿瘤诊断是一项具有挑战性的任务,但对于计划治疗以停止或减慢肿瘤的生长至关重要。在过去的十年中,卷积神经网络(CNN)在医学图像中肿瘤的自动分割中的高性能急剧增加。最近,与CNN相比,视觉变压器(VIT)已成为医学成像的稳健性和效率的核心重点。在本文中,我们提出了一个新颖的3D变压器,称为3D catbrats,用于基于最先进的SWIN变压器的磁共振图像(MRIS),用于使用残留块和通道注意模块的最先进的SWIN变压器进行磁共振图像(MRI)。在Brats 2021数据集上评估了所提出的方法,并实现了在验证阶段超过当前最新方法的平均骰子相似性系数(DSC)的定量度量。索引项 - CNN,变形金刚,VIT,语义段
脑肿瘤延迟标准的预处理工作流程,以进行进一步检查。脑介绍提供了一种可行的,但困难的肿瘤组织加工解决方案,这对于提高诊断和治疗的精度是必不可少的。但是,在捕获脑成像中固有的复杂的非线性潜在表示方面,通常会面临挑战。为了完成高质量的健康脑组织重建,这项工作提出了Diffkan Inpainting,这是一种创新的方法,将扩散模型与Kolmogorov-Arnold Networks架构融为一体。在置换过程中,我们介绍了重新粉刷的方法和肿瘤信息,以生成更高的保真度和更光滑的边缘的图像。定性和定量结果都表明,与最先进的方法相比,我们提出的Diffkan Inpainting Inpaints对Brats数据集更详细和现实的重建。从消融研究中获得的知识为将来的研究提供了见解,以平衡绩效与计算成本。
在包含胶质母细胞瘤的 MRI 图像中,我们考虑了全自动脑肿瘤分割的问题。我们建议采用 3D MedImg-CNN(三维卷积神经网络)方法,该方法在实现高效率的同时实现了高结果,这是当前技术难以实现的组合。我们的 3D MedImg-CNN 直接在原始图像模态上形成,因此可以直接从数据中学习特征表示。我们建议采用两种通路的新型级联架构,每种通路都提供肿瘤细节模型。充分利用我们模型的卷积特性也有助于我们在一分钟内分割出完整的大脑图像。建议的 3D MedImg-CNN 与 CNN 分割系统的效率是使用骰子相似系数 (DSC) 确定的。在 2013 年、2015 年和 2017 年 BraTS 数据集上进行的实验表明,所提出的方法在文献中占主导地位,因为它是最有效的方法之一。关键词 脑肿瘤、卷积神经网络、深度学习、分割
摘要。3D磁共振图像(MRI)中脑肿瘤分割的自动化是评估疾病的诊断和治疗的关键。近年来,卷积神经网络(CNN)在任务中显示出改善的结果。但是,在3D-CNN中,高内存消耗仍然是一个问题。此外,大多数方法不包含不确定性信息,这在医学诊断中尤其重要。这项工作研究3D编码器培训架构,该体系结构接受了基于贴片的技术,以减少记忆消耗并降低不平衡数据的效果。然后使用不同的训练模型来创建一个集合,以利用每个模型的属性,从而增加性能。我们还分别使用测试时间辍学(TTD)和数据启动(TTA)引入了Voxel的不确定性信息。另外,提出了一种混合方法,有助于提高分割的准确性。这项工作中提出的模型和不确定性估计测量已在Brats'20挑战中针对肿瘤分割和不确定性估计。
关于脑肿瘤分割的研究已经取得了长足进步,从基于阈值的方法到使用深度学习算法。在本研究中,我们提出了一种基于区域的脑肿瘤分割方法,即活动轮廓模型 (ACM)。使用从多模态脑肿瘤图像分割基准 (BRATS) 2015 数据集(包含 86 幅图像)中获得的流体衰减反转恢复 (FLAIR) 模态磁共振成像 (MRI) 图像数据进行肿瘤分割。我们的分割方法的初始阶段是使用多级 Otsu 阈值为 ACM 算法找到初始初始化点/区域,本研究中使用的级别为 3 级。获得初始初始化区域后,继续使用 ACM 进行分割过程,探索肿瘤区域以获得完整准确的肿瘤区域结果。本研究的结果显示,我们的研究的骰子相似度 (DS) 为 0.7856,总时间为 28.080722 秒,这比我们与之比较的其他方法要好,DS 为 0.75 比 0.78。
关于脑成像应用的研究有很多。马来西亚的统计数据显示,神经胶质瘤是脑瘤中最常见的疾病类型之一。神经胶质瘤脑瘤是脑组织内神经胶质细胞的异常生长,被称为脑组织。放射科医生通常使用磁共振成像 (MRI) 图像序列来诊断脑瘤。然而,放射科医生手动检查脑瘤诊断是一项困难且耗时的任务,因为肿瘤的形状和外观各不相同。他们还会注射钆造影剂来增强图像模态,这会给患者带来副作用。因此,本文提出了一种使用 Sobel 边缘检测和数学形态学操作对 MRI 脑图像进行自动分割和检测的方法。从脑瘤图像分割基准 (BRATS) 获得了总共 30 个神经胶质瘤 T1 加权 MRI 脑图像。使用区域重叠定量评估分割和检测的结果,准确率为 80.2%,表明所提出的方法很有前景。
使用磁共振成像检测脑肿瘤是目前人工智能和医学工程面临的最大挑战之一。尽早发现这些脑肿瘤非常重要,因为它们可能会长大直至死亡。脑肿瘤可分为良性和恶性。创建一个智能医疗诊断系统来根据 MRI 成像诊断脑肿瘤是医学工程的重要组成部分,因为它可以帮助医生尽早发现脑肿瘤并监督整个康复过程中的治疗。在本研究中,提出了一种诊断良性和恶性脑肿瘤的综合方法。所提出的方法包括四个部分:图像增强以降低噪声并统一图像大小、对比度和亮度,基于形态学算子的图像分割,特征提取操作(包括基于分形模型的尺寸减小和特征选择),以及最终根据模糊深度卷积神经网络的分割和最佳类别的选择来改进特征。实验结果中使用 BraTS 数据集作为磁共振成像数据。还将一系列评估标准与以前的方法进行了比较,其中所提出的方法的准确率为 98.68%,具有显著的效果。
摘要:MRIS的脑肿瘤分割一直是放射科医生的一项艰巨任务,因此,需要自动和广义的系统来解决此任务。在医学成像中使用的所有其他深度学习技术中,基于U-NET的变体是文献中最常用的模型,可针对不同的方式分割医学图像。因此,本文的目的是研究U-NET体系结构中的众多进步和创新,以及最近的趋势,目的是强调使用U-NET的持续潜力用于改善脑肿瘤分割的性能。此外,我们还提供了不同U-NET体系结构的定量比较,以从优化的角度突出该网络的性能和演变。除此之外,我们还尝试了四个U-NET体系结构(3D U-NET,COATION U-NET,R2 COATION U-NET和修改3D U-NET),用于Brats 2020数据集,以供脑肿瘤细分,以更好地概述该体系结构在DICE SCORE和HAUSDORFF距离上的概述。最后,我们分析了医学图像分析的局限性和挑战,以提供有关在优化方面开发新体系结构的重要性的批判性讨论。