摘要:脑肿瘤是一个重大的医疗问题,它们的及时检测和治疗对于患者的福祉至关重要。本文使用磁共振成像(MRI)扫描和卷积神经网络(CNN)提出了一种创新的脑肿瘤检测和治疗方法。所提出的系统采用Python进行MRI图像分析和基于CNN的肿瘤分类。一旦确定了肿瘤,基于Arduino的治疗系统将用于管理针对特定肿瘤类别的激光和红外疗法。该集成系统为脑肿瘤诊断和治疗提供了简化有效的解决方案,可能会改善患者的预后。关键字:卷积神经网络(CNN);脑肿瘤; Arduino uno;激光治疗;红外疗法; Python; I.引言脑肿瘤仍然是医学诊断和治疗领域的巨大挑战。及时,准确的检测以及有效的治疗是确保患者最佳结果的关键因素。在这种情况下,诸如磁共振成像(MRI)和人工智能之类的先进技术表现出了巨大的希望。本文介绍了一种创新的系统,该系统利用MRI扫描的力量,卷积神经网络(CNNS)以及基于Arduino的基于Arduino的控制权来应对这一挑战。这项研究的主要目标是开发一个用于脑肿瘤检测和治疗的综合系统。该系统由两个主要组成部分组成:基于MRI的诊断和基于Arduino的治疗。MRI扫描在对脑肿瘤的初始检测和分类中起关键作用。使用Python和CNN算法,我们分析MRI图像以准确地识别并将脑肿瘤分为不同类别。一旦肿瘤分类,系统就会向Arduino微控制器发送序列数据信号,该信号负责启动适当的治疗。治疗方案包括激光和红外疗法,可以针对特定的肿瘤类别量身定制。这种方法提供了一种以患者为中心的脑肿瘤治疗方法,最大程度地减少了不必要的程序和副作用的风险。在该系统中,人工智能,医学成像和基于Arduino的控制的整合代表了脑肿瘤诊断和治疗领域的显着进步。通过自动化决策过程和治疗管理,我们旨在提高医疗保健提供效率并改善患者的结果。这项研究旨在为打击脑肿瘤的持续努力做出贡献,提供有前途的解决方案,将尖端技术和医疗专业知识结合在一起。
安全信息................................................................................................................................................................................................................................................................................................................................................................... Intended Users......................................................................................................... 2 Clinical Benefit......................................................................................................... 3 Device Lifetime......................................................................................................... 3禁忌症.................................................................................................................................................................................................................................................................................................................................................................事件............................................................................................................................................................................................................................................................................................................................................. 13
都依靠大脑(和身体)中的情感反应,这使我们的生活经常令人愉悦,但有时也非常痛苦。表明情绪是我们生活的燃料并不夸张。通常,我们的情绪得到了强烈控制。因此,我们很少会经历原始影响的情况,情绪只是使我们不知所措。这基本上是一件好事,因为控制我们的祖先的情感冲动有助于我们对现代社会的大多数日常态势需求做出更适当的反应。在每种给定情况下总是表现出情感反应是不可接受的。,但是,有些事件可能会使我们脱轨,我们可能会表现出接近原始影响的东西。为了说明我们日常生活中运行情绪系统的不同优势和可见性,让我们考虑两种情况下的情绪调节。在第一种情况下,想象一下自己在工作中与一位同事交谈,您会听到他们也想要促销。听到有关促销活动的伴随着令人不愉快的愤怒感觉。您开始感觉自己的心脏在您的胃中抽水更快和坑中。在您注册这些不愉快的感觉时,您会意识到自己很生气和羡慕,并且您认为同事的晋升不公平。您做得更好!一会儿你被惊呆了。然而,您可以控制自己的情绪,以使其他人向外看。在第二种情况下,想象一个密友或家族成员已经去世。您坐在电脑前;桌子上堆满了工作,您充满了悲伤。你被动摇了;你只是感到难过。您不能集中精力,这是不可能的。您感到非常痛苦,以至于您开始哭泣,表达了情感的表达。在这两个示例中,进化中的外部情况激活了“内置”(强烈遗传锚定)的情感系统,从而触发了原始的情绪,而无需认知标记(或情感的构建)。在第一个例子的背景下,您的同事获得了晋升,您被传递给您有机会获得有限的资源,从而产生了愤怒,羡慕的感觉。在早期
摘要 —近年来,深度学习 (DL) 对基于脑电图 (EEG) 的运动想象脑机接口 (MI-BMI) 的改进做出了重大贡献。在实现高分类准确率的同时,DL 模型的规模也不断扩大,需要大量的内存和计算资源。这对嵌入式 BMI 解决方案提出了重大挑战,该解决方案应通过本地处理数据来保证用户隐私、减少延迟和低功耗。在本文中,我们提出了 EEG-TCN ET,一种新颖的时间卷积网络 (TCN),它在只需要少量可训练参数的情况下实现了出色的准确率。其低内存占用和低推理计算复杂度使其适合在资源有限的边缘设备上进行嵌入式分类。在 BCI 竞赛 IV- 2a 数据集上的实验结果表明,EEG-TCN ET 在 4 类 MI 中实现了 77.35% 的分类准确率。通过为每个受试者找到最佳网络超参数,我们进一步将准确率提高到 83.84%。最后,我们在 Mother of All BCI Benchmarks (MOABB) 上展示了 EEG-TCN ET 的多功能性,这是一个包含 12 个不同 EEG 数据集和 MI 实验的大规模测试基准。结果表明,EEG-TCN ET 成功地推广到单个数据集之外,在 MOABB 上的表现比目前最先进的 (SoA) 好 0.25 倍。索引术语 — 脑机接口、运动意象、深度学习、卷积神经网络、边缘计算。
我保证,据我所知,我的论文不侵犯任何人的版权,也不违反任何专有权利,并且我的论文中包含的任何想法、技术、引用或来自他人作品的任何其他材料(无论是否已发表)均已根据标准引用惯例完全承认。此外,如果我所包含的受版权保护的材料超出了《印度版权法》所规定的公平使用范围,我保证我已获得版权所有者的书面许可,可以将此类材料纳入我的论文中,并将此类版权许可的副本附在我们的附录中。
跨大脑区域分布的功能相互作用模式被认为为有意识的信息处理提供了支架,在意识丧失时观察到明显的拓扑变化。然而,要在宏观尺度的大脑网络组织和有意识的认知之间建立牢固的联系,需要直接研究意识系统性减弱过程中神经心理学相关的结构修改。在这里,我们评估了一组健康参与者在基线静息状态 fMRI 以及两种不同水平的丙泊酚诱导镇静下的脑图整体和区域干扰。我们发现了一种持久的模块化架构,但构成更广泛的富人俱乐部集体一部分的大脑中枢发生了显著的重组。此外,富人俱乐部连接强度的降低与参与者在语义判断任务中的表现显着相关,表明这种高阶拓扑特征对有意识认知的重要性。这些结果强调了大脑功能相互作用的整体和区域特性在支持有意识认知方面的显著相互作用,这与我们对意识临床障碍的理解有关。
摘要 骑马是一种有效的肌肉疾病治疗方法。本研究的主要目标是开发一种物理治疗模拟器(概念验证),而不是真正的马,尽管采用了脑电图 (EEG) 放大器和惯性运动捕捉系统 (IMCS)。在实验中,专业和非专业骑手在骑马模拟器期间的身体运动和大脑行为受到监控。基于 IMCS,考虑了用于识别两组骑手骨盆区域活动变化的计算分析。EEG 系统用于调查从未使用过马模拟器的经验丰富的骑马者的大脑信号。为此,进行了以下实验,代表身体和大脑行为。结果得出结论,缺乏经验的骑马者在骑模拟器时往往会犯动作错误,这可能会导致外部臀部和背部区域不对称移位。脑电图研究表明,负责智力和注意力的额叶被激活。此外,负责运动和视觉的大脑颞叶和顶叶区域也显著激活。
成功候选人将开发并应用基于物理的计算方法来模拟在皮层内部(局部场电位;LFP)和外部(EEG、MEG)测量的电和磁脑信号。有关这种生物物理建模方法的评论,请参阅 Einevoll 等人的《自然神经科学评论》,2013 年。在 COBRA 中,这项建模工作将与在 UiO 生物科学系 Marianne Fyhn 实验室进行的小鼠视觉皮层内部实验记录进行比较。因此,该项目还涉及开发小鼠视觉皮层网络模型。
背景 - 已经开发出多种人体体外方法,人们对这些研究解决与临床(人体)药物使用和肿瘤病理生物学相关的问题的潜力非常感兴趣。这需要就如何评估现有证据的强度(即质量和数量)和此类研究的人类相关性达成一致。SAToRI-BTR(脑肿瘤研究体外方法的系统方法审查)项目旨在确定相关的评估标准,以帮助使用体外方法规划和/或评估脑肿瘤研究。目标 - 确定评估体外脑肿瘤研究质量和人类相关性的标准;评估此类标准对该领域工作的高级科学家的普遍接受度。方法 - 第一阶段涉及通过以下方式确定评估体外研究的潜在标准:(1)对脑肿瘤研究人员进行国际调查;(2)采访科学家、临床医生、监管者和期刊编辑;(3)分析相关报告、文件和已发表的研究。通过对研究结果进行内容分析,制定了脑肿瘤体外研究质量评估的初步标准清单。第二阶段由专家小组(德尔菲法)审查标准。结果 - 第一阶段的结果表明,体外研究的审查方法和质量差异很大,需要改进报告标准。确定了 129 项初步标准;删除了重复和高度特定于上下文的项目,最终有 48 项标准供专家(德尔菲法)小组审查。37 项标准达成一致,从而形成脑肿瘤研究体外研究评估的临时清单。结论 - 通过系统地整理评估标准并对其进行专家审查,SAToRI-BTR 已为体外脑肿瘤研究评估提供了初步指导。计划进一步制定该指导,包括研究适应和传播脑肿瘤研究不同子领域以及更广泛的体外领域的策略。