在过去15年中,我们对青少年大脑的两个主要区域学到了很多东西 - 前额叶皮层(大脑的首席执行官)和边缘系统(情感引擎室)。从青春期(青春期到大约18岁),到成年(大约18至25岁左右),再到成年后期(从20年代中期开始),前额叶皮层会发生神经系统变化,并开始与边缘大脑更好地沟通。这会导致所有大脑开始更有效,有效地发挥作用。随着前额皮层发展的发展,执行功能和技能的发展对年轻人的“意义创造”能力有影响。这将影响他们处理有关他们了解自己的信息以及如何将它们整合在一起以“知道自己是谁”的能力。科学表明,在男性和女性之间,即使是家庭中的出生顺序,额外的皮层的发展也有很大差异。似乎很清楚的是,18岁的arbitarity年龄可能为时过早,无法为年轻人做出重大决定,包括关于其职业的决定。似乎当我们通过自然的神经系统发展和改进执行功能的改善以添加新的“认知”软件和技能,以建立链接并看到我们生活的模式时,似乎更合适的时间来做出这些决定。我们如何将这些信息整合到职业实践中?我们应该更多地了解这项科学以告知我们的职业实践吗?如果我们这样做,我们的实践将如何改变?大脑的发展是一个复杂的持续过程,作为一个职业,我们需要更多地了解我们是否要在职业领域更有效地提供帮助。
他们汇集了一群8至26岁之间的视觉障碍儿童和年轻人,并要求他们识别图像中的物体 - 一棵树,公共汽车,鸡,一堆书等。- 首先在灰度中,然后是颜色。在另一项测试中,他们要求小组确定提交给它们的两个圆盘中的哪个具有更轻的色调,而研究人员调整了颜色。
虽然科学家已经能够研究参与记忆形成和检索的大脑部分,但这些过程是如何由大脑的各个部分实施的。虽然科学家已经能够研究参与记忆形成和检索的大脑部分,但这些过程是如何由大脑的各个部分实施的。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年6月14日。 https://doi.org/10.1101/2023.05.11.539934 doi:Biorxiv Preprint
1 以色列赫兹利亚赖克曼大学 Dina Recanati 医学院,2 以色列赫兹利亚赖克曼大学 Baruch Ivcher 心理学院,3 加拿大安大略省多伦多市多伦多大学言语病理学系,4 加拿大安大略省多伦多大学健康网络 KITE 多伦多康复研究所,5 美国加利福尼亚州洛杉矶市南加州大学 Leonard Davis 老年医学学院,6 美国加利福尼亚州洛杉矶市南加州大学心理学系,7 美国加利福尼亚州洛杉矶市南加州大学生物医学工程系,8 以色列海法大学社会福利与健康科学学院创意艺术疗法学院,9 以色列海法大学老龄化研究中心,10 以色列海法大学戏剧与健康科学实验室和 Emili Sagol 创意艺术疗法研究中心
婴儿刺激会在人类成年人中引起广泛的神经和行为反应,如此大规模的资源分配证明了原始依恋的进化意义。在这里,我们检查了依恋提醒是否也会触发跨脑一致性并产生更大的神经一致性,如受试者间相关性所示。在催产素/安慰剂给药设计中,人类母亲被拍摄两次,刺激包括四个标准的陌生母亲和婴儿的生态视频:两个婴儿/母亲独自一人(独自一人)和两个母亲 - 婴儿二元环境(社交)。理论驱动的分析测量了父母照顾网络(PCN)预注册节点的跨脑同步性,该网络将支撑哺乳动物母性的皮层下结构与与模拟、心理化和情绪调节有关的皮层区域整合在一起,数据驱动的分析使用全脑分区评估全脑一致性。结果表明,PCN 和神经轴存在广泛的跨脑同步,从初级感觉/躯体感觉区域到岛叶扣带区,再到颞叶和前额叶皮质。社交背景产生了明显更多的跨脑一致性,PCN 纹状体、海马旁回、颞上沟、ACC 和 PFC 仅在母婴社交线索下显示跨脑同步。母婴社交同步的即时波动,从低同步性发作到紧密协调的积极发作,都通过预先注册的 ACC 中的跨脑一致性在线跟踪。研究结果表明,社会依恋刺激代表着进化过程中显著的普遍线索,不需要口头叙述,能够引发大量的大脑间一致性,并表明母婴关系是人类文明的核心标志,可能起到将大脑粘合成统一的体验并将人类束缚在社会群体中的作用。
研究表明,从孩子到5岁的孩子喝的东西可能会对他们的健康产生重大影响。美国儿科学院的专家,营养与饮食学院,美国儿科牙科学会和美国心脏协会的专家建议牛奶和水作为1-5岁儿童的饮料。由于营养素含量的差异,生物利用度的有限证据以及对饮食质量和健康结果的影响有限,因此不建议使用18种基于植物的替代品。如果孩子对奶牛过敏或适应素食主义者或某些素食饮食偏好,则例外将是不加糖的,强化的豆浆。
Trinity College研究所(TCIN)的首席物理学家Christian Kerskens博士是研究文章的合着者,刚刚在《物理通讯杂志》上发表。他说:“我们改编了一个想法,用于实验以证明量子重力的存在,从而使用已知的量子系统,这些系统与未知系统相互作用。如果已知的系统纠缠,则未知系统也必须是量子系统。它规避了找到我们一无所知的测量设备的困难。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年11月25日。 https://doi.org/10.1101/2023.11.24.568585 doi:Biorxiv Preprint
摘要 在认知、计算和神经科学领域,从业者经常推理计算模型代表或学习什么,以及实例化什么算法。这种推理的假定目标是将有关所讨论模型的主张概括为有关思维和大脑以及这些系统的神经认知能力的主张。这种推理通常基于模型在任务上的表现,以及该表现是否接近人类行为或大脑活动。在这里,我们展示了这种论证如何使模型与其目标之间的关系复杂化;我们强调人工神经网络 (ANN),尽管任何落入相同推理模式的理论-大脑关系都存在风险。在本文中,我们在一个正式框架——元理论演算——内对从 ANN 到大脑再返回的推理进行建模,以便就如何广泛理解和使用模型以及如何最好地正式描述它们及其功能展开对话。为此,我们从已发表的记录中表达了关于模型在一阶逻辑中的成功和失败的主张。我们提出的形式化方法描述了科学家在裁决理论时制定的决策过程。我们证明,将文献中的论证形式化可以揭示理论与现象之间关系的潜在深层问题。我们讨论了这对认知科学、神经科学和心理学研究的广泛意义;当模型失去以有意义的方式在理论和数据之间进行调解的能力时,这意味着什么;以及这对我们的领域在进行高级科学推理时部署的元理论演算意味着什么。