1计算机科学与工程,1 Dayananda Sagar技术与管理学院,印度班加罗尔摘要:对可持续能源的需求不断增长,促使人们探索了创新解决方案,以产生可再生能源。 这项研究旨在利用嵌入在快速破坏者中的创新技术来利用车辆运动,以产生可再生电力。 通过利用压电材料,齿条机制和混合能源系统,该平台优化了为城市基础设施供电的能源转换。 基于IoT的集成监控系统会动态调整流量密度和环境因素,从而确保有效的能源使用。 这种可持续的能源解决方案不仅解决了能源需求的上升,而且还通过为路灯,物联网设备和其他低压应用程序提供动力来支持智能城市计划。 考虑到可扩展性和成本效益的设计,该平台为传统电力系统提供了可再生,适应性和环保的替代方案,从而促进了能源独立性并降低了环境影响。 它的潜力在于创建自我维持的城市生态系统,同时与全球可持续性目标保持一致。 关键字 - 可持续能源,压电传感器,速度断路器,能量收集,机架和小齿轮机构,可再生能源系统,物联网集成。1计算机科学与工程,1 Dayananda Sagar技术与管理学院,印度班加罗尔摘要:对可持续能源的需求不断增长,促使人们探索了创新解决方案,以产生可再生能源。这项研究旨在利用嵌入在快速破坏者中的创新技术来利用车辆运动,以产生可再生电力。通过利用压电材料,齿条机制和混合能源系统,该平台优化了为城市基础设施供电的能源转换。基于IoT的集成监控系统会动态调整流量密度和环境因素,从而确保有效的能源使用。这种可持续的能源解决方案不仅解决了能源需求的上升,而且还通过为路灯,物联网设备和其他低压应用程序提供动力来支持智能城市计划。考虑到可扩展性和成本效益的设计,该平台为传统电力系统提供了可再生,适应性和环保的替代方案,从而促进了能源独立性并降低了环境影响。它的潜力在于创建自我维持的城市生态系统,同时与全球可持续性目标保持一致。关键字 - 可持续能源,压电传感器,速度断路器,能量收集,机架和小齿轮机构,可再生能源系统,物联网集成。
视黄酸诱导基因 I (RIG-I) 样受体 (RLR) 是启动抗病毒免疫反应所必需的主要病毒 RNA 传感器。RLR 受到严格的转录和翻译后调控,其中泛素化是最重要的调控之一。然而,泛素化在 RLR 转录中的作用尚不清楚。在这里,我们筛选了 375 种明确的泛素连接酶敲除细胞系,并确定泛素蛋白连接酶 E3 组分 N-识别素 5 (UBR5) 是 RLR 转录的正调节因子。UBR5 缺陷会降低对 RNA 病毒的抗病毒免疫反应,同时增加原代细胞和小鼠中的病毒复制。与野生型同窝仔相比,Ubr5 敲除小鼠更容易受到致命的 RNA 病毒感染。从机制上看,UBR5 介导三部分基序蛋白 28 (TRIM28) 的赖氨酸 63 连接泛素化,TRIM28 是 RLR 的表观遗传抑制因子。这种修饰可防止 TRIM28 的分子内 SUMO 化,从而解除 TRIM28 对 RLR 转录的抑制。总之,UBR5 通过泛素化和去 SUMO 化 TRIM28 实现 RLR 表达的快速上调,从而增强抗病毒免疫反应。
© 2024 Infosys Limited,印度班加罗尔。保留所有权利。Infosys 认为本文件中的信息在发布之日是准确的;此类信息如有更改,恕不另行通知。Infosys 承认其他公司对本文件中提及的商标、产品名称和其他知识产权的所有权。除非明确允许,否则未经 Infosys Limited 和/或本文件项下任何指定知识产权持有人的事先许可,不得复制、存储在检索系统中或以任何形式或任何方式(电子、机械、印刷、影印、录制或其他方式)传输本文件或其任何部分。
本文研究以参数方式设计制动冷却管道。这是绝对必要的,即使由于在汽车的原型阶段不断变化而持续的变化,它也会不断地改变它,这也会影响管道的设计。该研究还通过最大程度地减少压降下降并查看管道横截面和管道内部流动分离的速度分布,通过更改IT的各种参数来研究计算机流体模拟的优化。在设计阶段之后,进行了管道的工程方面,涉及制动导管的安装和设计方法,系统的包装,所使用的材料和碳纤维上色以及根据Koenigseggsegg Startards的表面质量,以及使风管的内部表面光滑的方法。关键字 - 参数设计,计算流体动力学,混合层压板,增强器/CAUL平板
摘要 - 电动汽车的关键要求是有效的制动。这项研究的目的是提供利用各种电源调节器的再生制动系统的详细描述。这项研究利用了降压型增强转换器。使用两种方法来修改从再生制动过程中产生的波动输入得出的电压:一种用于减少其,另一种用于增强其。随后,电压传感器检测到所得的输出电压,然后使用Arduino微控制器调节该电压。检查结果表明,降压转换器的性能良好,将输出电压保持在39-40伏的范围内。即使输入电压中有波动,这也可以很好地发挥作用。电压值可用于为36伏电动机的电池充电。这些发现证明了利用降压转换器调节器的功效。此外,它可以在8秒钟内为电池充电,这使其成为电动汽车的可行选择,以替代电池再生制动。
摘要:与早期的科学技术产品一样,人工智能和生物技术的快速发展也带来了伦理挑战。而且,在日益多元化的文化中,关于如何实现共同利益的共识已不再可望而不可及。这里的一个危险是,对未来技术好处的谨慎乐观态度被“技术热情”所取代,这种热情不承认基督教信仰所认为的关于人类的基本真理。特别是,“超人类主义”愿景背后的假设是将人类提升到以前认为可能的范围之外,这与基督教神学对人类意义的信念相矛盾。
摘要:本文评估了通过直接能量沉积 (DED) 粉末涂层翻新磨损的制动盘。使用中碳钢粉末涂覆铸铁盘。该钢的沉积直接在盘表面进行,或者在先前沉积不锈钢缓冲层之后进行。可以看出,尽管在盘与两种不同涂层(缓冲层和外层)之间的界面处形成了铸造微结构,但使用缓冲层可确保良好的涂层附着力。将涂层盘与两种不同的无铜商用摩擦材料进行测试,以评估其摩擦学性能。两种摩擦材料在涂层盘上滑动时测量到的摩擦系数、比磨损率和总排放量非常相似。这些摩擦学数据略高于未涂层盘获得的数据,这表明需要改进顶层涂层成分和表面处理才能获得更好的性能。
沉默子是一类调控 DNA 元件,可减少其目标启动子的转录;它们是增强子的抑制对应物。尽管沉默子在几十年前就被发现,且有证据表明其在发育和疾病中发挥了重要作用,但人们对它的研究远不如增强子。然而,最近有一系列论文报道了在各种模型系统中对沉默子的系统研究。沉默子通常是双功能调控元件,根据细胞环境,它们也可以充当增强子,并且富含表达数量性状基因座 (eQTL) 和疾病相关变异。在组蛋白修饰或相关蛋白的分布中,尚无证据表明所有沉默子都具有共同的“沉默子染色质特征”;相反,沉默子可能分为不同的亚类,通过不同的(可能重叠的)机制发挥作用。
摘要 在英国,追尾碰撞占所有车辆事故的 8% 左右,而未注意到或对刹车灯信号做出反应是主要原因。同时,车辆上传统的白炽刹车灯正越来越多地被大量采用 LED 的设计所取代。在本文中,我们使用一种新方法在模拟环境中使用物理刹车灯组件记录受试者的反应时间来研究刹车灯设计的有效性。测量了 22 名受试者对 10 对 LED 和白炽灯刹车灯的反应时间。为每个受试者调查了三个事件,即刹车灯亮到油门松开的延迟时间(BrakeAcc)、油门松开到刹车踏板踩下的延迟时间(AccPdl)以及从灯亮到刹车踏板踩下的累积时间(BrakePdl)。据我们所知,这是第一项将反应时间分为 BrakeAcc 和 AccPdl 的研究。结果表明,与八个测试的 LED 灯相比,两个装有白炽灯泡的刹车灯导致反应时间明显变慢。BrakeAcc 结果还显示,经验丰富的受试者通过松开油门踏板对刹车灯的激活做出反应更快。有趣的是,分析还显示,刹车灯的类型会影响 AccPdl 时间,尽管经验丰富的受试者并不总是比没有经验的受试者反应更快。总体而言,研究发现,不同设计的刹车灯会显著影响驾驶员的反应时间。