我们小组率先在 LHC 的高能物理分析中使用量子机器学习 (QML)。我们已在门模型量子计算机模拟器和硬件上成功将几种 QML 分类算法应用于 ttH(与顶夸克对相关的希格斯粒子生成)和希格斯粒子到两个μ子(希格斯粒子与第二代费米子的耦合)这两项最近的 LHC 旗舰物理分析。模拟研究已使用 IBM Quantum Framework、Google Tensorflow Quantum Framework 和 Amazon Braket Framework 进行,并且我们已实现良好的分类性能,其性能类似于目前在 LHC 物理分析中使用的经典机器学习方法,例如经典 SVM、经典 BDT 和经典深度神经网络。我们还使用 IBM 超导量子计算机硬件进行了研究,其性能令人鼓舞,并且接近 IBM 量子模拟器的性能。此外,我们将研究扩展到其他 QML 领域,例如量子异常检测和量子生成对抗,并已取得一些初步成果。此外,我们还使用 NVIDIA cuQuantum 和 NERSC Perlmutter HPC 克服了大量子比特(25 个量子比特或更多)和大量事件情况下的密集计算资源挑战。
摘要 利用量子信息的特性来造福机器学习模型可能是量子计算领域最活跃的研究领域。这种兴趣支持了多种软件框架(例如 Qiskit、Pennylane、Braket)的开发,以实现、模拟和执行量子算法。它们中的大多数允许我们定义量子电路、运行基本量子算法并访问低级原语,具体取决于此类软件应该运行的硬件。对于大多数实验,这些框架必须手动集成到更大的机器学习软件管道中。研究人员负责了解不同的软件包,通过开发长代码脚本将它们集成起来,分析结果并生成图表。长代码通常会导致错误的应用程序,因为平均错误数量与程序长度成正比。此外,由于需要熟悉代码脚本中涉及的所有不同软件框架,其他研究人员将很难理解和重现实验。我们提出了 QuASK,这是一个用 Python 编写的开源量子机器学习框架,可帮助研究人员进行实验,特别关注量子核技术。QuASK 可用作命令行工具来下载数据集、预处理数据集、量子机器学习例程、分析和可视化结果。QuASK 实现了大多数最先进的算法,通过量子核来分析数据,并可以使用投影核、(梯度下降)可训练量子核和结构优化的量子核。我们的框架还可以用作库并集成到现有软件中,从而最大限度地提高代码重用率。
II。 波函数的正常函数III。 叠加原理和量子测量IV。 平均值 /期望值e。不确定性关系f。概率密度和表达概率电流密度g的连续性方程。希尔伯特空间h。对3D真实空间向量的简要回忆(评论)i。 简要回忆傅立叶扩展(评论)j。 希尔伯特矢量空间的介绍i。式符号II。 矩阵形式2的操作员 量子信息章节前奏:量子测量b。 简介c。产品状态d。纠缠状态e。矩阵形式f。 Bloch球G。基本大门h。 Pauli&Hadamard运营商i。克利福德门 更多逻辑门k。受控的保利,控制的哈达玛德和受控的toffoli大门。贝尔的不平等。 Grover的算法。基本的公钥分布o。 基本量子传送3。 隧道 简介b。通过单个障碍i。派生II。 宽障碍c。通过单个矩形屏障d进行隧道时间d。隧道虽然是双屏障谐振隧道结构i。谐振隧道二极管 - 定性讨论e。 Breit-Wigner公式f。穿过多个障碍4。 量子点,井和纳米线:变量a的分离。 使用有效的质量方程式b进行变量分离的简介b。量子点c。量子井II。波函数的正常函数III。 叠加原理和量子测量IV。 平均值 /期望值e。不确定性关系f。概率密度和表达概率电流密度g的连续性方程。希尔伯特空间h。对3D真实空间向量的简要回忆(评论)i。 简要回忆傅立叶扩展(评论)j。 希尔伯特矢量空间的介绍i。式符号II。 矩阵形式2的操作员 量子信息章节前奏:量子测量b。 简介c。产品状态d。纠缠状态e。矩阵形式f。 Bloch球G。基本大门h。 Pauli&Hadamard运营商i。克利福德门 更多逻辑门k。受控的保利,控制的哈达玛德和受控的toffoli大门。贝尔的不平等。 Grover的算法。基本的公钥分布o。 基本量子传送3。 隧道 简介b。通过单个障碍i。派生II。 宽障碍c。通过单个矩形屏障d进行隧道时间d。隧道虽然是双屏障谐振隧道结构i。谐振隧道二极管 - 定性讨论e。 Breit-Wigner公式f。穿过多个障碍4。 量子点,井和纳米线:变量a的分离。 使用有效的质量方程式b进行变量分离的简介b。量子点c。量子井波函数的正常函数III。叠加原理和量子测量IV。平均值 /期望值e。不确定性关系f。概率密度和表达概率电流密度g的连续性方程。希尔伯特空间h。对3D真实空间向量的简要回忆(评论)i。简要回忆傅立叶扩展(评论)j。希尔伯特矢量空间的介绍i。式符号II。矩阵形式2的操作员量子信息章节前奏:量子测量b。简介c。产品状态d。纠缠状态e。矩阵形式f。 Bloch球G。基本大门h。 Pauli&Hadamard运营商i。克利福德门更多逻辑门k。受控的保利,控制的哈达玛德和受控的toffoli大门。贝尔的不平等。 Grover的算法。基本的公钥分布o。基本量子传送3。隧道简介b。通过单个障碍i。派生II。宽障碍c。通过单个矩形屏障d进行隧道时间d。隧道虽然是双屏障谐振隧道结构i。谐振隧道二极管 - 定性讨论e。 Breit-Wigner公式f。穿过多个障碍4。量子点,井和纳米线:变量a的分离。使用有效的质量方程式b进行变量分离的简介b。量子点c。量子井
我们提出了一种用于准备任意量子态的新型确定性方法。当我们的协议被编译成 CNOT 和任意单量子比特门时,它会准备一个深度为 O (log( N )) 的 N 维状态,时空分配(一种度量标准,它考虑到某些辅助量子比特通常不需要在整个电路中处于活动状态)为 O ( N ) ,这两者都是最优的。当编译成 { H , S , T , CNOT } 门集时,我们表明它比以前的方法需要更少的量子资源。具体来说,它可以准备一个任意状态,误差不超过 ϵ,最佳深度为 O (log( N ) + log(1 /ϵ )),时空分配为 O ( N log(log( N ) /ϵ )),分别优于 O (log( N ) log(log( N ) /ϵ )) 和 O ( N log( N/ϵ ))。我们说明了我们的协议如何通过减少时空分配来快速准备许多不相交状态,而只需要常数因子辅助开销——O ( N ) 个辅助量子位被有效地重用,以准备深度为 O (w + log( N )) 而不是 O (w log( N )) 的 w N 维状态的乘积状态,从而有效地实现每个状态的恒定深度。我们重点介绍了这种能力有用的几个应用,包括量子机器学习、汉密尔顿模拟和求解线性方程组。我们提供我们的协议的量子电路描述、详细的伪代码和使用 Braket 的门级实现示例。
IBM量子体验和Amazon Braket有机会在许多小型和嘈杂的量子计算机上实现量子算法。超过20个量子计算机,最多有65个量子位由IBM部署。没有人可以量子交流。然后,这个问题乞求与经典通信分布的量子计算的优势和缺点。用经典资源代替量子通常会导致大开销。例如,模拟n个量表需要o(n = 2 n)经典位。更一般而言,通过具有N量子位的量子电路模拟量子电路,需要1 O(2 ck)使用量子电路[5]。在分布式计算中有多少量子优势取决于算法。CIRAC等。 al。 [6]表明,分布式3SAT保留量子优势。 Bravyi等。 al [5]在稀疏量子电路和Peng等的经典计算中估计了开销。 al。 [12]张量网络的衍生结果,簇之间连接有限。 分布式量子计算还可以进行,除了其他“ virtual Qubits”的明显优势,这是显着降低噪声的优势。 这是因为分裂算法会导致深度的显着降低。 由于输出中的噪声随电路的深度成倍比例缩放,这可能是一个显着的优势。 据我们所知,这很简单,可能会说小点,以前尚未研究过。CIRAC等。al。[6]表明,分布式3SAT保留量子优势。Bravyi等。al [5]在稀疏量子电路和Peng等的经典计算中估计了开销。al。[12]张量网络的衍生结果,簇之间连接有限。分布式量子计算还可以进行,除了其他“ virtual Qubits”的明显优势,这是显着降低噪声的优势。这是因为分裂算法会导致深度的显着降低。由于输出中的噪声随电路的深度成倍比例缩放,这可能是一个显着的优势。据我们所知,这很简单,可能会说小点,以前尚未研究过。例如,如果电路的深度足够大,则量子计算机的输出可能会被噪声淹没,但是具有较浅深度的分布式计算可能会产生显着的结果。
量子计算是计算机技术的一个分支,它使用量子理论的原理来处理信息。与传统的二进制计算机不同,后者使用的比特只能是 1 或 0,而量子计算机使用的量子比特可以同时存在于多个状态。这种称为叠加的特性允许进行更复杂的计算,并成倍增加处理能力。云计算是一种通过互联网提供数据存储、服务器、网络和数据库等服务的模型。量子云计算结合了这两种技术,使人们无需拥有一台量子计算机就可以访问强大的量子计算机。IBM 是目前唯一一家提供云量子计算设施的公司,提供免费使用的 5 量子比特机器。云计算和量子计算之间的关系是协同作用。用户无需拥有量子计算机,就可以利用基于云的量子处理来完成复杂的任务,例如解码化合物、优化供应链和管理财务风险。此外,云量子计算通过处理更复杂的数字来实现更安全的加密方法。云量子计算的应用包括教育,它可以用来向学生传授量子计算概念。借助云量子计算机,量子物理教育将变得更加容易。学生无需物理设备即可学习和进行实验。该领域具有巨大的发展潜力,研究人员可以利用云量子计算机来测试理论和开展研究。马丁·雷诺兹 (Martin Reynolds) 表示,由于特定的房间条件和需要新的编程技能,实施基于云的量子计算具有挑战性。IT 团队必须开发专业知识来微调算法和硬件。尽管面临挑战,但云提供商将成为首批提供量子即服务的提供商之一,为开发人员提供访问量子处理的方法。如果实际问题能够得到解决,量子云计算可能会产生与人工智能类似的深远影响。量子力学支持开发创新应用程序,包括量子算法的实施和测试。研究人员可以利用基于云的资源进行实验、测试理论和比较架构。此外,基于云的平台有助于创建向人们介绍量子概念的游戏。在数字化转型领域,可以使用基于云的量子资源处理和预测数 TB 的大数据。 qBraid Lab、Quandela Cloud、Xanadu Quantum Cloud、Rigetti Computing 的 Forest、Microsoft 的 LIQUi| 和 IBM Q Experience 等基于云的平台提供对各种量子设备和模拟器的访问。这些平台提供编程语言、开发框架和示例算法的工具。一些值得注意的基于云的量子资源包括:* qBraid Lab:一个提供软件工具和访问 IBM、Amazon Braket、Xanadu、OQC、QuEra、Rigetti 和 IonQ 量子硬件的平台。 * Quandela Cloud:第一台可通过 Perceval 脚本语言访问的欧洲光子量子计算机。 * Xanadu Quantum Cloud:一个基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:一个用于量子计算的工具套件,具有编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:一个用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个 transmon 量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q 网络提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两款硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特传输处理器)和 QX(荷兰国家超级计算机 Cartesius 上的量子模拟器后端,最多可模拟 31 个量子比特)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的协作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。欧洲首款可通过 Perceval 脚本语言访问的光子量子计算机。 * Xanadu Quantum Cloud:基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:量子计算工具套件,包含编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:量子计算软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:通过基于 Python 的 Qiskit 框架或图形界面提供量子硬件和 HPC 模拟器访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两个硬件芯片提供基于云的量子计算的平台。 Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。欧洲首款可通过 Perceval 脚本语言访问的光子量子计算机。 * Xanadu Quantum Cloud:基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:量子计算工具套件,包含编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:量子计算软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:通过基于 Python 的 Qiskit 框架或图形界面提供量子硬件和 HPC 模拟器访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两个硬件芯片提供基于云的量子计算的平台。 Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。和示例算法。 * 微软的 LIQUi|:一种用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。Qutech 是欧洲第一个为两个硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,它们托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的合作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。和示例算法。 * 微软的 LIQUi|:一种用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。Qutech 是欧洲第一个为两个硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,它们托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的合作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。这些平台为用户提供了一系列工具和资源,用于探索和开发量子算法和应用。文章还提到了几篇与基于云的量子计算相关的研究论文和出版物,凸显了人们对该领域日益增长的兴趣。这些平台为用户提供了一系列工具和资源,用于探索和开发量子算法和应用。文章还提到了几篇与基于云的量子计算相关的研究论文和出版物,凸显了人们对该领域日益增长的兴趣。
金融领域的许多重要任务通常依赖于复杂且耗时的计算。量子技术的快速发展提出了一个问题:量子计算是否可以比传统计算更有效地解决这些任务。本论文通过使用商用量子资源解决均值方差投资组合选择模型的不同大小问题实例,研究了量子计算在金融领域的潜在用途。实验采用了基于门的量子计算机和量子退火,这是实现量子计算机的两种主要技术。为了解决基于门的量子计算机上的均值方差优化问题,该模型被公式化为二次无约束二元优化 (QUBO) 问题,然后将其用作最大的量子计算即服务 (QCaaS) 平台上可用的量子资源的输入,IBM Quantum Lab、Microsoft Azure Quantum 和 Amazon Braket。为了使用量子退火解决问题,采用了服务 D-Wave Leap 上提供的混合量子经典求解器,它将均值方差模型的约束二次形式作为输入。问题实例也在该模型的 QUBO 形式上以经典方式求解,其中结果作为量子资源性能的基准。结果基于三个性能指标进行评估:求解时间、解决方案质量和求解成本。研究结果表明,基于门的量子计算机还不够成熟,无法始终找到最佳解决方案,计算时间长且成本高昂。此外,使用基于门的量子计算机并非毫无问题,大多数量子计算机甚至无法完成任务。另一方面,量子退火表现出更高的成熟度,混合求解器能够快速准确地进行优化,即使对于非常大的问题实例也是如此。使用混合求解器的结果证明了对量子退火的进一步研究是合理的,以更好地了解该技术的能力和局限性。结果还表明,量子退火已经达到了一定的成熟度,它有可能对金融机构产生重大影响,创造使用传统计算无法获得的价值。
量子计算领域很年轻:Feynman在1982年介绍了量子计算的概念[3]; Shor提出了第一个实际相关的算法(用于基于整数分解的打破加密协议),该算法可以在1994年在QC上有效地计算[6]。实施实际质量控制花了一段时间。学术界和IBM之间的合作伙伴关系在1998年创建了第一个工作的2量1 QC [7],但该公司花了18年的时间才能在2016年公开访问公众5季度的QC [8]。目前,有一些QC可商购。d-wave在2011年开始出售绝热质量控制(尽管关于绝热质量控制的争论正在进行中,QC正在进行中2 [10]),目前的质量> 5000 Qubits [11]。QC也可以通过完全管理的云服务获得。IBM访问了学术和工业合作伙伴的20和50量子门的超导QC,以探索2017年的实用应用[12](2020年在2020年进行了65 Qubit机器[13])。对于非商业用途,IBM O效率为5 Q QC,通过IBM Q体验在线平台基于IBM Cloud(以及基于本地和云的模拟器)[14]。rigetti在2017年获得了8量超导的质量控制[15]。Google在2018年建立了基于72 QUITAIT GATE的超导QC [16]。IONQ在2019年引入了离子捕获的11 Quit QC [17]。 霍尼韦尔在2020年创建了被捕获的离子捕获的10量QC [18]。 Xanadu在2020年[19,20]中占8量和12克光子QC。 Microsoft通过Microsoft Quantum Development Kit提供了对拓扑QC的模拟器3的访问权限[21](并计划将来访问实际QC)。IONQ在2019年引入了离子捕获的11 Quit QC [17]。霍尼韦尔在2020年创建了被捕获的离子捕获的10量QC [18]。Xanadu在2020年[19,20]中占8量和12克光子QC。Microsoft通过Microsoft Quantum Development Kit提供了对拓扑QC的模拟器3的访问权限[21](并计划将来访问实际QC)。汇总的云服务也开始出现。例如,Amazon Web服务开始通过其2019年的制动器服务从各个供应商那里访问QC [23]。目前,它介绍了D-Wave绝热2048-和5640 Qubit QC,IONQ基于ION的基于ION-ION基于ION-ION的11 Quitit QC和Rigetti 32 Quitti Qubition QC [24]。
